請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃千芬(Chen-Fen Huang),陳勁吾(Chin-Wu Chen) | |
| dc.contributor.author | Chien-Wen Lin | en |
| dc.contributor.author | 林建文 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:57:08Z | - |
| dc.date.available | 2014-07-04 | |
| dc.date.available | 2021-05-15T17:57:08Z | - |
| dc.date.copyright | 2014-07-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-20 | |
| dc.identifier.citation | [1] T. A. Jaggar, 'How the seismograph works,' The Volcano Letter, vol. 268, pp. 1-4, 1930.
[2] D. Linehan, 'Earthquakes in the West Indian region,' Transactions, American Geophysical Union, vol. 21, pp. 229-232, 1940. [3] M. Ewing and J. L. Worzel, 'Long-range sound transmission,' Geological Society of America Memoirs, vol. 27, pp. 1-32, 1948. [4] I. Tolstoy and M. Ewing, 'The T phase of shallow-focus earthquakes,' Bulletin of the Seismological Society of America, vol. 40, no. 1, pp. 25-51, 1950. [5] C.-H. Lin, 'T-waves excited by S-waves and oscillated within the ocean above the Southeastern Taiwan Forearc,' Geophysical Research Letters, vol. 28, no. 17, pp. 3297-3300, 2001. [6] H. Medwin, 'Speed of sound in water: A simple equation for realistic parameters,' The Journal of the Acoustical Society of America, vol. 58, no. 6, pp. 1318-1319, 1975. [7] D. Ingmanson and W. Wallace, Oceanography: An Introduction. Wadsworth Pub. Co., 1985. [8] W. Munk, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography. Cambridge University Press (Cambridge and New York), 1995. [9] A. R. Milne, 'Comparison of spectra of an earthquake T-phase with similar signals from nuclear explosions,' Bulletin of the Seismological Society of America, vol. 49, no. 4, pp. 317-329, 1959. [10] A. Shapira, 'T phase from underwater explosions off time coast of Israel,' Bulletin of the Seismological Society of America, vol. 71, pp. 1049-4059, 1981. [11] H. Sugioka, Y. Fukao, T. Kanazawa, and K. Kanjo, 'Volcanic events associated with an enigmatic submarine earthquake,' Geophysical Journal International, vol. 142, no. 2, pp. 361-370, 2000. [12] J. Talandier and E. A. Okal, 'On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores,' Bulletin of the Seismological Society of America, vol. 88, no. 2, pp. 621-632, 1998. [13] K. Obara and T. Maeda, 'Reverse propagation of T waves from the Emperor seamount chain,' Geophysical Research Letters, vol. 36, no. 8, p. L08304, 2009. [14] C. D. de Groot-Hedlin and J. A. Orcutt, 'Synthesis of earthquake-generated T-waves,' Geophysical Research Letters, vol. 26, no. 9, pp. 1227-1230, 1999. [15] M. Kosuga, 'Localization of T-wave energy on land revealed by a dense seismic network in Japan,' Geophysical Journal International, vol. 187, no. 1, pp. 338-354, 2011. [16] E. A. Okal, 'The generation of T waves by earthquakes,' Advances in Geophysics, vol. 49, pp. 1-65, 2008. [17] R. H. Johnson, J. Northrop, and R. Eppley, 'Sources of Pacific T phases,' Journal of Geophysical Research, vol. 68, no. 14, pp. 4251-4260, 1963. [18] D. A. Walker, C. S. McCreery, and Y. Hiyoshi, 'T-phase spectra, seismic moments, and tsunamigenesis,' Bulletin of the Seismological Society of America, vol. 82, no. 3, pp. 1275-1305, 1992. [19] C. G. Fox, R. P. Dziak, H. Matsumoto, and A. E. Schreiner, 'Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays,' Marine Technology Society Journal, vol. 27, no. 4, pp. 22-30, 1993. [20] M. Park, R. I. Odom, and D. J. Soukup, 'Modal scattering: A key to understanding oceanic T-waves,' Geophysical Research Letters, vol. 28, no. 17, pp. 3401-3404, 2001. [21] R. E. Keenan and L. R. L. Merriam, 'Arctic abyssal T phases: Coupling seismic energy to the ocean sound channel via under-ice scattering,' J Acoust Soc Am, vol. 89, no. 3, pp. 1128-1133, 1991. [22] M. A. Biot, 'The interaction of Rayleigh and Stoneley waves in the ocean bottom,' Bulletin of the Seismological Society of America, vol. 42, no. 1, pp. 81-93, 1952. [23] C. M. Williams, R. A. Stephen, and D. K. Smith, 'Hydroacoustic events located at the intersection of the Atlantis (30◦N) and Kane (23◦40′N) Transform Faults with the Mid-Atlantic Ridge,' Geochemistry, Geophysics, Geosystems, vol. 7, no. 6, 2006. [24] C.-R. Lin, B.-Y. Kuo, W.-T. Liang, W.-C. Chi, Y.-C. Huang, J. Collins, and C.-Y. Wang, 'Ambient noise and teleseismic signals recorded by ocean-bottom seismometers offshore eastern Taiwan,' Terrestrial, Atmospheric and Oceanic Sciences, vol. 21, no. 5, pp. 743-755, 2010. [25] H. P. Crotwell, T. J. Owens, and J. Ritsema, 'The taup toolkit: Flexible seismic travel-time and ray-path utilities,' Seismological Research Letters, vol. 70, no. 2, pp. 154-160, 1999. [26] N.-C. Hsiao, T.-W. Lin, S.-K. Hsu, K.-W. Kuo, T.-C. Shin, and P.-L. Leu, 'Improvement of earthquake locations with the Marine Cable Hosted Observatory (MACHO) offshore NE Taiwan,' Marine Geophysical Research, pp. 1-10, 2013. [27] R. P. Dziak, 'Empirical relationship of T-wave energy and fault parameters of north-east Pacific Ocean earthquakes,' Geophysical Research Letters, vol. 28, no. 13, pp. 2537-2540, 2001. [28] T. McDougall and P. Barker, 'Getting started with teos-10 and the gibbs seawater (gsw) oceanographic toolbox,' Geophysical Research Letters, 2011. [29] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics. Springer, 2011. [30] M. D. Collins, 'A split-step Pade solution for the parabolic equation method,' The Journal of the Acoustical Society of America, vol. 93, no. 4, pp. 1736-1742, 1993. [31] M. B. Porter, The BELLHOP Manual and User's Guide, Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, May 2011. [32] T. J. Ulrych, M. D. Sacchi, and S. L. M. Freire, 'Eigenimage Processing of Seismic Sections,' in Covariance Analysis for Seismic Signal Processing. Society of Exploration Geophysicists, Tulsa, Oklahoma, 1999, ch. 12, pp. 241-274. [33] R. H. Johnson, R. A. Norris, and F. K. Duennebier, 'Abyssally generated T phases,' in The Crust and Upper Mantle of the Pacific Area. American Geophysical Union, 1968, pp. 70-78. [34] 邱育昇,「臺灣東部外海地震T波特性之研究」, 國立臺灣海洋大學碩士論 文,1993。 [35] 凃道霖,「臺灣地區T波的生成研究」, 國立臺灣大學碩士論文,2008。 [36] 魏文宏,「由西太平洋地區T波觀測來探討其成因與遠震參數之關係」, 國 立中央大學碩士論文,2010。 [37] 劉金源,『水中聲學 水聲系統之基本操作原理』, 國立編譯館,2001。 [38] 何春蓀,『臺灣地質概論 臺灣地質說明圖』, 經濟部中央地質調查所, 1986。 [39] 林慶仁、陳柏棋、王兆璋、張旭光、張家溥、田蓉禮、郭本垣,「新一代沈 浮式海底地震儀之研發」, 第32屆海洋工程研討會論文集,2010。 [40] 劉金源,『海洋聲學導論 海洋聲波傳播與粗糙面散射之基本原理』, 中山 大學出版社,2002。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5372 | - |
| dc.description.abstract | T 波 (Tertiary wave) 為地震波轉換成聲波的一種特殊波相,並且在聲發聲道 (SOFAR channel) 內傳播,因此有較低的能量損失以致於能夠被數千公里外的陸上測站或水聽器所記錄到。過去T波的觀測以及理論皆建立在陸地測站的資料上,近幾年來,我們同樣在位於臺灣東部外海的海底地震儀 (ocean-bottom seismometers, OBS) 上觀測T波訊號,這樣的發現使我們想要瞭解海水聲速隨機擾動與海底地形對於T波所造成的影響。
本論文使用 2006 年 9 月至 2012 年 7 月的 33 個海底地震儀,主要佈放於沖繩海槽以及花東海盆及呂宋島弧附近,並選取東經 118 至 145 度、北緯 15 至 31 度,規模大於 5 的地震事件共 440 個,依據以下條件︰( 1 ) 1 – 10 Hz 有明顯能量;(2)較長的持續時間;(3)明顯的紡錘狀波形,共挑選出 88 個含有 T 波的地震事件。我們分析含有 T 波的地震事件之震源位置,發現大部分是淺於 50 公里的淺層地震,僅有一個是來自於深度 225 公里的深層地震。 88 個 T 波事件中,有 32 個事件是由坐落於花東海盆且深度深達 4500 公尺的 3 個海底地震儀所記錄到。為了避免過多變因模糊研究目的,我們聚焦分析兩個同時佈放的海底地震儀測站 S002 與 S004 所接收到的 T 波訊號,並利用此兩測站所在之海洋物理及地形環境進行聲場及聲線的模擬。 S002 坐落於沖繩海槽,此處地形較為平坦,平均水深約 2000 公尺左右。 S004 坐落於花東海盆,此處地形變化較為複雜,且平均水深深達 4500 公尺。 為了瞭解在聲發聲道內的 T 波能量是如何向外傳遞至海床上的海底地震儀,我們使用聲線法模擬在真實物理環境的海底地形及聲速剖面之下 T 波的傳播情形。從模擬中可以得知, T 波不需要在聲發聲道內傳遞,而是在整個水體內傳播,所以可以傳遞至深海的海床上。此外,我們也透過了格點搜尋法,並利用模擬與觀測到的 T 波到時找出可能的 T 波轉換點,接著利用可能的 T 波轉換點所產生的聲線之脈衝響應,與陸上測站所得出的震源時間函數模擬 T 波波形。從模擬波形可以知道, T 波的紡錘狀波形有可能是來自不同方位角及不同深度的轉換點。 | zh_TW |
| dc.description.abstract | T waves excited by earthquakes propagate along the SOFAR channel with low transmission loss, and therefore can be recorded on land-based seismic stations and hydrophones located thousands of kilometers away from earthquake epicenters. Early T-wave observations are mostly based on recordings by land-based stations due to the mechanics of the energy conversion of acoustic waves into seismic phases. Recently, T-wave signals have also been detected by ocean-bottom seismometers (OBS) at deep ocean basin off-shore eastern Taiwan, raising the question of how deep ocean environment and sound speed perturbation affects the generation and propagation of T-waves.
In this study, we examined the seismic waveform data recorded at 33 OBSs deployed in Okinawa Trough and Huatung Basin from 2006 to 2012. During this time period, there are 440 regional earthquakes with magnitude larger than 5 in the Western Pacific Ocean. A total of 88 T-wave events are identified using the criteria that significant energy in the dominant frequency of about 1 10 Hz and time duration longer than 100 seconds and spindle shape waveform. Most of these events were generated by shallow-depth (less than 50 km) earthquakes, with only one exception by deep source of 225km. Among these 88 events, 32 events were recorded on 3 OBSs located at 4500-m depth of Huatung Basin, where the depth of minimum sound speed is around 1100 m. The difference in seafloor topography around the OBS sites may influence the characteristics of T-wave signals. The seafloor topography in Okinawa Trough (S002) is relatively flat, with an average depth of 2000 m. In contrast, Huatung Basin (S004) has more complex topography between the OBS and the epicenter of earthquake. To understand how acoustic energy scatters from the SOFAR channel into the ocean bottom, we apply the acoustic ray theory to simulate acoustic propagation in the presence of realistic ocean floor topography and sound speed profile. Our simulations indicate that seafloor topography indeed affects the acoustic propagation pattern, part of which may reach deep ocean regions. We further investigate potential conversion points of T-waves through 2-D grid-search technique. By minimizing the differences between predicted and observed arrival times of T-waves, we reveal possible conversion points around each OBS station. We also simulate seismic energy of T-waves by stacking energy coming from a series of potential conversion points within a specific time-window. The stacked energy distribution expresses a pattern similar to the envelope function of T-waves, indicating that the long-lasting waveform may result from a series of seismic-acoustic conversion processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:57:08Z (GMT). No. of bitstreams: 1 ntu-103-R01241104-1.pdf: 45070701 bytes, checksum: 72323bafd0f36928ed89f3c5094ed14c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 iii 中文摘要 v Abstract vii 第一章 緒論 1 1.1 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 臺灣地區文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究內容大綱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 第二章 研究資料與方法 13 2.1 研究區域 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 研究流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 T 波事件的選取與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第三章 聲速擾動對 T 波傳播之影響 37 3.1 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 模擬環境設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 模擬結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 第四章 海底地形對 T 波傳播的影響 55 4.1 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 模擬結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 第五章 總結 87 5.1 研究發現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 建議 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 參 考 文 獻 89 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用臺灣東部外海海底地震儀觀測T波︰聲速隨機擾動與地形對T波的影響 | zh_TW |
| dc.title | T-wave observations on ocean-bottom seismometers offshore eastern Taiwan: effects of ocean sound speed perturbations and seafloor topography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉金源(Jin-Yuan Liu),林正洪(Cheng-Horng Lin),郭本垣(Ban-Yuan Kuo) | |
| dc.subject.keyword | T波,水中聲學,聲發聲道,拋物型方程式法,聲線追蹤法, | zh_TW |
| dc.subject.keyword | T-wave,Underwater acoustics,SOFAR channel,Parabolic Equation,Ray tracing, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-06-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 44.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
