Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立(Nei-Li Chan)
dc.contributor.authorHsiang-Yi Wuen
dc.contributor.author吳香儀zh_TW
dc.date.accessioned2021-06-16T02:26:51Z-
dc.date.available2015-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-04
dc.identifier.citation1. Suzuki TKH (2015) Polyamines: A Universal Molecular Nexus for Growth,
Survival, and Specialized Metabolism (Springer, Japan).
2. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochemical and biophysical research communications 271(3):559-564.
3. Williams K (1997) Interactions of polyamines with ion channels. Biochem. J. 325:289-297.
4. Gerner EW, Meyskens FL, Jr. (2004) Polyamines and cancer: old molecules, new understanding. Nature reviews. Cancer 4(10):781-792.
5. Casero RA, Jr., Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nature reviews. Drug discovery 6(5):373-390.
6. Coffino P (2001) Regulation of cellular polyamines by antizyme. Nature reviews. Molecular cell biology 2(3):188-194.
7. Lewenhoeck D (1678) Observationes D. Anthonii Lewenhoeck, De Natis E Semine Genitali Animalculis. Philosophical Transactions of the Royal Society 12:1040-1043.
8. Dudley HW, Rosenheim O, Starling WW (1926) The Chemical Constitution of Spermine: Structure and Synthesis. The Biochemical journal 20(5):1082-1094.
9. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. The Biochemical journal 376(Pt 1):1-14.
10. Quemener V, et al. (1994) Polyamine deprivation: a new tool in cancer treatment. Anticancer research 14(2A):443-448.
11. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB life 61(9):880-894.
12. Seiler N (2004) Catabolism of polyamines. Amino acids 26(3):217-233.
13. Holtta E (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16(1):91-100.
14. Parchment RE, Pierce GB (1989) Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res 15. Hu RH, Pegg AE (1997) Rapid induction of apoptosis by deregulated uptake of polyamine analogues. The Biochemical journal 328 ( Pt 1):307-316.
16. Winqvist R MT, Seppanen P, Janne OA, Alhonen-Hongisto L, Janne J, Grzeschik KH, Alitalo K. (1986) Human ornithine decarboxylase sequences map to chromosome regions 2pter----p23 and 7cen----qter but are not coamplified with the NMYC oncogene. Cytogenet Cell Genet. 42(3):133-140.
17. Radford DM, et al. (1990) Two chromosomal locations for human ornithine decarboxylase gene sequences and elevated expression in colorectal neoplasia. Cancer Res 50(19):6146-6153.
18. Hsieh JT, Denning MF, Heidel SM, Verma AK (1990) Expression of human chromosome 2 ornithine decarboxylase gene in ornithine decarboxylase-deficient Chinese hamster ovary cells. Cancer Res 50(8):2239-2244.
19. Almrud JJ, et al. (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. Journal of molecular biology 295(1):7-16.
20. Tobias KE, Kahana C (1993) Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry 32(22):5842-5847.
21. Osterman AL, Kinch LN, Grishin NV, Phillips MA (1995) Acidic residues important for substrate binding and cofactor reactivity in eukaryotic ornithine decarboxylase identified by alanine scanning mutagenesis. The Journal of biological chemistry 270(20):11797-11802.
22. Kern AD, Oliveira MA, Coffino P, Hackert ML (1999) Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure 7(5):567-581.
23. Albeck S, et al. (2008) Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein science : a publication of the Protein Society 17(5):793-802.
24. Myers DP JL, Ipe VG, Murphy GE, Phillips MA. (2001) Long-Range Interactions in the Dimer Interface of Ornithine Decarboxylase Are important for enzyme function. Biochemistry 40(44):13230-13236.
25. Su KL, Liao YF, Hung HC, Liu GY (2009) Critical factors determining dimerization of human antizyme inhibitor. The Journal of biological chemistry 284(39):26768-26777.
26. Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Current opinion in structural biology 8(6):759-769.
27. Jackson LK, Brooks HB, Osterman AL, Goldsmith EJ, Phillips MA (2000) Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 39(37):11247-11257.
28. Kern A, et al. (1996) Crystallization of a mammalian ornithine decarboxylase. Proteins 24(2):266-268.
29. Osterman AL, Brooks HB, Jackson L, Abbott JJ, Phillips MA (1999) Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry 38(36):11814-11826.
30. Jackson LK, Goldsmith EJ, Phillips MA (2003) X-ray structure determination of Trypanosoma brucei ornithine decarboxylase bound to D-ornithine and to G418: insights into substrate binding and ODC conformational flexibility. The Journal of biological chemistry 278(24):22037-22043.
31. Packham G, Cleveland JL (1997) Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways. Oncogene 15(10):1219-1232.
32. Holtta E, Auvinen M, Andersson LC (1993) Polyamines are essential for cell transformation by pp60v-src: delineation of molecular events relevant for the transformed phenotype. The Journal of cell biology 122(4):903-914.
33. Gilmour SK, Avdalovic N, Madara T, O'Brien TG (1985) Induction of ornithine decarboxylase by 12-O-tetradecanoylphorbol 13-acetate in hamster fibroblasts. Relationship between levels of enzyme activity, immunoreactive protein, and RNA during the induction process. The Journal of biological chemistry 260(30):16439-16444.
34. Hibshoosh H, Johnson M, Weinstein IB (1991) Effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene 6(5):739-743.
35. Bey P, et al. (1978) Analogues of ornithine as inhibitors of ornithine decarboxylase. New deductions concerning the topography of the enzyme's active site. Journal of medicinal chemistry 21(1):50-55.
36. B. W. Metcalf PB, C. Danzin , M. J. Jung , P. Casara , J. P. Vevert (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc 100(8):2551-2553.
37. Poulin R, Lu L, Ackermann B, Bey P, Pegg AE (1992) Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. The Journal of biological chemistry 267(1):150-158.
38. McCann PP, Pegg AE (1992) Ornithine decarboxylase as an enzyme target for therapy. Pharmacology & therapeutics 54(2):195-215.
39. Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210(4467):332-334.
40. Van Nieuwenhove S, et al. (1985) Treatment of gambiense sleeping sickness in the Sudan with oral DFMO (DL-alpha-difluoromethylornithine), an inhibitor of ornithine decarboxylase; first field trial. Transactions of the Royal Society of Tropical Medicine and Hygiene 79(5):692-698.
41. Milord F, Pepin J, Loko L, Ethier L, Mpia B (1992) Efficacy and toxicity of eflornithine for treatment of Trypanosoma brucei gambiense sleeping sickness. Lancet 340(8820):652-655.
42. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO journal 17(24):7151-7160.
43. Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et biophysica acta 1786(2):153-177.
44. Murakami Y, Matsufuji S, Hayashi S, Tanahashi N, Tanaka K (2000) Degradation of ornithine decarboxylase by the 26S proteasome. Biochemical and biophysical research communications 267(1):1-6.
45. Bercovich Z, Kahana C (2004) Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. The Journal of biological chemistry 279(52):54097-54102.
46. Zhang M, Pickart CM, Coffino P (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. The EMBO journal 22(7):1488-1496.
47. Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proceedings of the National Academy of Sciences of the United States of America 73(6):1858-1862.
48. Murakami Y, Hayashi S (1985) Role of antizyme in degradation of ornithine decarboxylase in HTC cells. The Biochemical journal 226(3):893-896.
49. Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y, Hayashi S (1992) Antizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovary-cell extracts. The Biochemical journal 283 ( Pt 3):661-664.
50. Matsufuji S, et al. (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80(1):51-60.
51. Rom E, Kahana C (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proceedings of the National Academy of Sciences of the United States of America 91(9):3959-3963.
52. Nilsson J, Koskiniemi S, Persson K, Grahn B, Holm I (1997) Polyamines regulate both transcription and translation of the gene encoding ornithine decarboxylase antizyme in mouse. European journal of biochemistry / FEBS 250(2):223-231.
53. Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. The EMBO journal 23(24):4857-4867.
54. Kurian L, Palanimurugan R, Godderz D, Dohmen RJ (2011) Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 477(7365):490-494.
55. Li X, Coffino P (1992) Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Molecular and cellular biology 12(8):3556-3562.
56. Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P (1990) Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. The Journal of biological chemistry 265(20):11823-11826.
57. Li X, Coffino P (1993) Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Molecular and cellular biology 13(4):2377-2383.
58. Mamroud-Kidron E, et al. (1994) A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. European journal of biochemistry / FEBS 226(2):547-554.
59. Kahana C, Asher G, Shaul Y (2005) Mechanisms of protein degradation: an odyssey with ODC. Cell Cycle 4(11):1461-1464.
60. Mangold U (2005) The antizyme family: polyamines and beyond. IUBMB life 57(10):671-676.
61. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364-368.
62. Ghoda L, Sidney D, Macrae M, Coffino P (1992) Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Molecular and cellular biology 12(5):2178-2185.
63. Lu L, Stanley BA, Pegg AE (1991) Identification of residues in ornithine decarboxylase essential for enzymic activity and for rapid protein turnover. The Biochemical journal 277 ( Pt 3):671-675.
64. Miyazaki Y, Matsufuji S, Murakami Y, Hayashi S (1993) Single amino-acid replacement is responsible for the stabilization of ornithine decarboxylase in HMOA cells. European journal of biochemistry / FEBS 214(3):837-844.
65. Takeuchi J, Chen H, Hoyt MA, Coffino P (2008) Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. The Biochemical journal 410(2):401-407.
66. Takeuchi J, Chen H, Coffino P (2007) Proteasome substrate degradation requires association plus extended peptide. The EMBO journal 26(1):123-131.
67. Fong WF, Heller JS, Canellakis ES (1976) The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures. Biochimica et biophysica acta 428(2):456-465.
68. Matsufuji S, et al. (1996) Assignment of the human antizyme gene (OAZ) to chromosome 19p13.3 by fluorescence in situ hybridization. Genomics 38(1):102-104.
69. Hoffman DW, Carroll D, Martinez N, Hackert ML (2005) Solution structure of a conserved domain of antizyme: A protein regulator of polyamines. Biochemistry 44(35):11777-11785.
70. Pegg AE (2006) Regulation of ornithine decarboxylase. The Journal of biological chemistry 281(21):14529-14532.
71. Li X, Coffino P (1994) Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Molecular and cellular biology 14(1):87-92.
72. Li X, et al. (1996) The N terminus of antizyme promotes degradation of heterologous proteins. The Journal of biological chemistry 271(8):4441-4446.
73. Murai N, Murakami Y, Matsufuji S (2003) Identification of nuclear export signals in antizyme-1. The Journal of biological chemistry 278(45):44791-44798.
74. Ivanov IP, Gesteland RF, Atkins JF (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52(2):119-129.
75. Zhu C, Lang DW, Coffino P (1999) Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport. The Journal of biological chemistry 274(37):26425-26430.
76. Ivanov IP, Rohrwasser A, Terreros DA, Gesteland RF, Atkins JF (2000) Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proceedings of the National Academy of Sciences of the United States of America 97(9):4808-4813.
77. Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2009) Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. The Biochemical journal 419(1):99-103, 101 p following 103.
78. Fujita K, Murakami Y, Hayashi S (1982) A macromolecular inhibitor of the antizyme to ornithine decarboxylase. The Biochemical journal 204(3):647-652.
79. Kitani T, Fujisawa H (1989) Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochimica et biophysica acta 991(1):44-49.
80. Murakami Y, Matsufuji S, Nishiyama M, Hayashi S (1989) Properties and fluctuations in vivo of rat liver antizyme inhibitor. The Biochemical journal 259(3):839-845.
81. Liu YC, Liu YL, Su JY, Liu GY, Hung HC (2011) Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PloS one 6(4):e19253.
82. Hsieh JY, Yang JY, Lin CL, Liu GY, Hung HC (2011) Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor. PloS one 6(9):e24366.
83. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. Acta crystallographica. Section D, Biological crystallography 62(Pt 8):859-866.
84. Adams PD, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography 66(Pt 2):213-221.
85. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60(Pt 12 Pt 1):2126-2132.
86. Kahana C (2011) Identification, assay, and functional analysis of the antizyme inhibitor family. Methods Mol Biol 720:269-278.
87. Lin WT (2009) Purification and crystallization of human ornithine decarboxylase in complex with antizyme.
88. Chou F (2010) Structural study of human ornithine decarboxylase in complex with antizyme.
89. Grishin NV, Osterman AL, Brooks HB, Phillips MA, Goldsmith EJ (1999) X-ray Structure of Ornithine Decarboxylase fromTrypanosomabrucei: The Native Structure and the Structure in Complex with α-Difluoromethylornithine. Biochemistry 38(46):15174-15184.
90. Chen H, MacDonald A, Coffino P (2002) Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. The Journal of biological chemistry 277(48):45957-45961.
91. Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A (2004) An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature structural & molecular biology 11(9):830-837.
92. Berko D, et al. (2012) The direction of protein entry into the proteasome determines the variety of products and depends on the force needed to unfold its two termini. Molecular cell 48(4):601-611.
93. Ichiba T, et al. (1994) Functional regions of ornithine decarboxylase antizyme. Biochemical and biophysical research communications 200(3):1721-1727.
94. Lee PY (2009) Crystallization and preliminary X-ray crystallographic analysis of the human antizyme inhibitor in complex with antizyme.
95. Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and molecular life sciences : CMLS 58(2):244-258.
96. Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cellular and molecular life sciences : CMLS 60(7):1394-1406.
97. Russell DH, Snyder SH (1969) Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Molecular pharmacology 5(3):253-262.
98. Tang H, et al. (2009) Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes to cells : devoted to molecular & cellular mechanisms 14(1):79-87.
99. Keren-Paz A, et al. (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25(37):5163-5172.
100. Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cellular and molecular life sciences : CMLS 66(15):2479-2488.
101. Murakami Y, et al. (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360(6404):597-599.
102. Chen L, et al. (2013) Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nature medicine 19(2):209-216.
103. Kim W, et al. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Molecular cell 44(2):325-340.
104. Sakata K, Kashiwagi K, Igarashi K (2000) Properties of a polyamine transporter regulated by antizyme. The Biochemical journal 347 Pt 1:297-303.
105. Newman RM, et al. (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. The Journal of biological chemistry 279(40):41504-41511.
106. Lim SK, Gopalan G (2007) Antizyme1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 26(46):6593-6603.
107. Lin Y, et al. (2002) A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC cell biology 3:15.
108. Dulloo I, Gopalan G, Melino G, Sabapathy K (2010) The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proceedings of the National Academy of Sciences of the United States of America 107(11):4902-4907.
1. Suzuki TKH (2015) Polyamines: A Universal Molecular Nexus for Growth,
Survival, and Specialized Metabolism (Springer, Japan).
2. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochemical and biophysical research communications 271(3):559-564.
3. Williams K (1997) Interactions of polyamines with ion channels. Biochem. J. 325:289-297.
4. Gerner EW, Meyskens FL, Jr. (2004) Polyamines and cancer: old molecules, new understanding. Nature reviews. Cancer 4(10):781-792.
5. Casero RA, Jr., Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nature reviews. Drug discovery 6(5):373-390.
6. Coffino P (2001) Regulation of cellular polyamines by antizyme. Nature reviews. Molecular cell biology 2(3):188-194.
7. Lewenhoeck D (1678) Observationes D. Anthonii Lewenhoeck, De Natis E Semine Genitali Animalculis. Philosophical Transactions of the Royal Society 12:1040-1043.
8. Dudley HW, Rosenheim O, Starling WW (1926) The Chemical Constitution of Spermine: Structure and Synthesis. The Biochemical journal 20(5):1082-1094.
9. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. The Biochemical journal 376(Pt 1):1-14.
10. Quemener V, et al. (1994) Polyamine deprivation: a new tool in cancer treatment. Anticancer research 14(2A):443-448.
11. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB life 61(9):880-894.
12. Seiler N (2004) Catabolism of polyamines. Amino acids 26(3):217-233.
13. Holtta E (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16(1):91-100.
14. Parchment RE, Pierce GB (1989) Polyamine oxidation, programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res 49(23):6680-6686.
15. Hu RH, Pegg AE (1997) Rapid induction of apoptosis by deregulated uptake of polyamine analogues. The Biochemical journal 328 ( Pt 1):307-316.
16. Winqvist R MT, Seppanen P, Janne OA, Alhonen-Hongisto L, Janne J, Grzeschik KH, Alitalo K. (1986) Human ornithine decarboxylase sequences map to chromosome regions 2pter----p23 and 7cen----qter but are not coamplified with the NMYC oncogene. Cytogenet Cell Genet. 42(3):133-140.
17. Radford DM, et al. (1990) Two chromosomal locations for human ornithine decarboxylase gene sequences and elevated expression in colorectal neoplasia. Cancer Res 50(19):6146-6153.
18. Hsieh JT, Denning MF, Heidel SM, Verma AK (1990) Expression of human chromosome 2 ornithine decarboxylase gene in ornithine decarboxylase-deficient Chinese hamster ovary cells. Cancer Res 50(8):2239-2244.
19. Almrud JJ, et al. (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. Journal of molecular biology 295(1):7-16.
20. Tobias KE, Kahana C (1993) Intersubunit location of the active site of mammalian ornithine decarboxylase as determined by hybridization of site-directed mutants. Biochemistry 32(22):5842-5847.
21. Osterman AL, Kinch LN, Grishin NV, Phillips MA (1995) Acidic residues important for substrate binding and cofactor reactivity in eukaryotic ornithine decarboxylase identified by alanine scanning mutagenesis. The Journal of biological chemistry 270(20):11797-11802.
22. Kern AD, Oliveira MA, Coffino P, Hackert ML (1999) Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure 7(5):567-581.
23. Albeck S, et al. (2008) Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein science : a publication of the Protein Society 17(5):793-802.
24. Myers DP JL, Ipe VG, Murphy GE, Phillips MA. (2001) Long-Range Interactions in the Dimer Interface of Ornithine Decarboxylase Are important for enzyme function. Biochemistry 40(44):13230-13236.
25. Su KL, Liao YF, Hung HC, Liu GY (2009) Critical factors determining dimerization of human antizyme inhibitor. The Journal of biological chemistry 284(39):26768-26777.
26. Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Current opinion in structural biology 8(6):759-769.
27. Jackson LK, Brooks HB, Osterman AL, Goldsmith EJ, Phillips MA (2000) Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 39(37):11247-11257.
28. Kern A, et al. (1996) Crystallization of a mammalian ornithine decarboxylase. Proteins 24(2):266-268.
29. Osterman AL, Brooks HB, Jackson L, Abbott JJ, Phillips MA (1999) Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps. Biochemistry 38(36):11814-11826.
30. Jackson LK, Goldsmith EJ, Phillips MA (2003) X-ray structure determination of Trypanosoma brucei ornithine decarboxylase bound to D-ornithine and to G418: insights into substrate binding and ODC conformational flexibility. The Journal of biological chemistry 278(24):22037-22043.
31. Packham G, Cleveland JL (1997) Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways. Oncogene 15(10):1219-1232.
32. Holtta E, Auvinen M, Andersson LC (1993) Polyamines are essential for cell transformation by pp60v-src: delineation of molecular events relevant for the transformed phenotype. The Journal of cell biology 122(4):903-914.
33. Gilmour SK, Avdalovic N, Madara T, O'Brien TG (1985) Induction of ornithine decarboxylase by 12-O-tetradecanoylphorbol 13-acetate in hamster fibroblasts. Relationship between levels of enzyme activity, immunoreactive protein, and RNA during the induction process. The Journal of biological chemistry 260(30):16439-16444.
34. Hibshoosh H, Johnson M, Weinstein IB (1991) Effects of overexpression of ornithine decarboxylase (ODC) on growth control and oncogene-induced cell transformation. Oncogene 6(5):739-743.
35. Bey P, et al. (1978) Analogues of ornithine as inhibitors of ornithine decarboxylase. New deductions concerning the topography of the enzyme's active site. Journal of medicinal chemistry 21(1):50-55.
36. B. W. Metcalf PB, C. Danzin , M. J. Jung , P. Casara , J. P. Vevert (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc 100(8):2551-2553.
37. Poulin R, Lu L, Ackermann B, Bey P, Pegg AE (1992) Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. The Journal of biological chemistry 267(1):150-158.
38. McCann PP, Pegg AE (1992) Ornithine decarboxylase as an enzyme target for therapy. Pharmacology & therapeutics 54(2):195-215.
39. Bacchi CJ, Nathan HC, Hutner SH, McCann PP, Sjoerdsma A (1980) Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 210(4467):332-334.
40. Van Nieuwenhove S, et al. (1985) Treatment of gambiense sleeping sickness in the Sudan with oral DFMO (DL-alpha-difluoromethylornithine), an inhibitor of ornithine decarboxylase; first field trial. Transactions of the Royal Society of Tropical Medicine and Hygiene 79(5):692-698.
41. Milord F, Pepin J, Loko L, Ethier L, Mpia B (1992) Efficacy and toxicity of eflornithine for treatment of Trypanosoma brucei gambiense sleeping sickness. Lancet 340(8820):652-655.
42. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO journal 17(24):7151-7160.
43. Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochimica et biophysica acta 1786(2):153-177.
44. Murakami Y, Matsufuji S, Hayashi S, Tanahashi N, Tanaka K (2000) Degradation of ornithine decarboxylase by the 26S proteasome. Biochemical and biophysical research communications 267(1):1-6.
45. Bercovich Z, Kahana C (2004) Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. The Journal of biological chemistry 279(52):54097-54102.
46. Zhang M, Pickart CM, Coffino P (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. The EMBO journal 22(7):1488-1496.
47. Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proceedings of the National Academy of Sciences of the United States of America 73(6):1858-1862.
48. Murakami Y, Hayashi S (1985) Role of antizyme in degradation of ornithine decarboxylase in HTC cells. The Biochemical journal 226(3):893-896.
49. Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y, Hayashi S (1992) Antizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovary-cell extracts. The Biochemical journal 283 ( Pt 3):661-664.
50. Matsufuji S, et al. (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80(1):51-60.
51. Rom E, Kahana C (1994) Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proceedings of the National Academy of Sciences of the United States of America 91(9):3959-3963.
52. Nilsson J, Koskiniemi S, Persson K, Grahn B, Holm I (1997) Polyamines regulate both transcription and translation of the gene encoding ornithine decarboxylase antizyme in mouse. European journal of biochemistry / FEBS 250(2):223-231.
53. Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. The EMBO journal 23(24):4857-4867.
54. Kurian L, Palanimurugan R, Godderz D, Dohmen RJ (2011) Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 477(7365):490-494.
55. Li X, Coffino P (1992) Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Molecular and cellular biology 12(8):3556-3562.
56. Ghoda L, Phillips MA, Bass KE, Wang CC, Coffino P (1990) Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. The Journal of biological chemistry 265(20):11823-11826.
57. Li X, Coffino P (1993) Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Molecular and cellular biology 13(4):2377-2383.
58. Mamroud-Kidron E, et al. (1994) A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. European journal of biochemistry / FEBS 226(2):547-554.
59. Kahana C, Asher G, Shaul Y (2005) Mechanisms of protein degradation: an odyssey with ODC. Cell Cycle 4(11):1461-1464.
60. Mangold U (2005) The antizyme family: polyamines and beyond. IUBMB life 57(10):671-676.
61. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364-368.
62. Ghoda L, Sidney D, Macrae M, Coffino P (1992) Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Molecular and cellular biology 12(5):2178-2185.
63. Lu L, Stanley BA, Pegg AE (1991) Identification of residues in ornithine decarboxylase essential for enzymic activity and for rapid protein turnover. The Biochemical journal 277 ( Pt 3):671-675.
64. Miyazaki Y, Matsufuji S, Murakami Y, Hayashi S (1993) Single amino-acid replacement is responsible for the stabilization of ornithine decarboxylase in HMOA cells. European journal of biochemistry / FEBS 214(3):837-844.
65. Takeuchi J, Chen H, Hoyt MA, Coffino
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53642-
dc.description.abstract多元胺(polyamines) 為結構中帶有許多正電荷的一級胺,包含了亞精胺(spermidine)、精胺酸(spermine)和腐胺(putrescine)等,此類物質可和DNA、RNA或蛋白質表面帶負電的區域交互作用,參與蛋白質活性調控、核酸代謝、維持各種核酸結構的穩定,因此多元胺在細胞生長與分化的過程皆扮演重要角色,由於過高濃度的多元胺會導致細胞癌化,因此在細胞內多元胺的含量受到嚴密控制。
人類鳥胺酸脫羧酶(ODC)為5’ -磷酸吡哆醛 (pyridoxal 5’ -phosphate,PLP) 依賴型酵素,負責將鳥胺酸 (ornithine)催化生成腐胺 (putrescine),此反應為多元胺合成途徑中之速率決定步驟,亦是多元胺合成主要之調控點,ODC結構包含兩個domains,N端為TIM-like α/β-barrel domain; C端為β-sheet domain,其活性中心之胺基酸Lys-69 會以Schiff base方式與輔酶PLP結合。兩個單體(monomer)會以頭尾相連(head to tail)的方式形成同質雙聚體(homodimer),形成具有催化活性之酵素,ODC酵素活性的高低與胞內多元胺濃度息息相關,故受到嚴密調節。
當細胞內多元胺濃度過高時,會藉由mRNA轉譯調控合成具有功能的全長抗酶蛋白(Antizyme ; Az),Az為ODC負回饋調控因子,能夠與ODC單體(monomer)結合形成異質雙聚體(heterodimer),Az與ODC結合後,ODC的酵素活性會受到Az抑制並,且ODC會發生構型變化,使其能被26S蛋白酶體(26Sproteasome)所辨識,進行獨特的不依賴泛素的降解路徑(ubiquitin-independent degradation pathway),而Az則仍以聚泛素化(poly-ubiquitination)方式進行降解。除了上述的負回饋機制外,細胞內可藉由抗酶抑制因子(Antizyme inhibitor; AzIN) 正向調控多元胺的合成,AzIN 在序列與結構上與ODC具有同源性,但缺乏ODC脫羧作用之酵素活性,其利用與Az形成更穩定之複合體而釋出ODC,使ODC免於和Az形成異雙聚合體,因而提高胞內ODC雙聚體含量。
本研究的主要目的在於解析ODC-Az蛋白質結構,以深入分析Az如何與ODC交互作用並抑制其酵素活性,並試圖探討Az如何促使26S蛋白酶體進行獨特的、不依賴泛素的降解路徑。我們成功製備ODC與Az之N端刪除突變形成之複合體,並順利獲得此複合體之晶體結構。發現Az結合ODC與ODC形成具酵素活性蛋白同質雙聚體的交互作用介面具有重疊性,這可以解釋為何ODC同質雙聚體的生成會因Az出現而受到抑制。此外,當Az-ODC形成異質雙聚體時,ODC-Az會曝露出一個推測可為26S蛋白酶體所辨識的區域,而此一由ODC-Az形成之連續表面能有效驅使26S蛋白酶體辨識並降解ODC。透過核磁共振(Nuclear magnetic resonance, NMR)實驗發現Az結合至ODC並未導致ODC C端(殘基424-461)區域發生構型變化。因此推論ODC C端區域的主要功能在於做為26S蛋白酶體降解ODC之起始片段,在26S蛋白酶體與ODC-Az複合體結合後、此區域可媒介26S蛋白酶體開始降解ODC。我們亦利用同源結構模擬來探討抗酶亞型Az2、Az3(antizyme isoforms; Az2, Az3)與ODC形成之複合體的性質,發現降解辨識相關之連續表面與ODC-Az具有明顯差異。此外,我們亦解出AzIN-Az蛋白質結構,此結構解釋了AzIN如何有效的抑制ODC與Az結合,進而恢復細胞內多胺的濃度。綜合以上所述,透過解析ODC-Az及AzIN-Az此二蛋白質複合體的晶體結構,我們提供了一個結構及機制上的新觀點來解釋Az如何抑制ODC的活性並促進其降解以維持細胞內多胺的恆定。
zh_TW
dc.description.abstractPolyamines, including spermidine, spermine, and putrescine, are positively charged small organic cations. By interacting with negatively charged nucleic acids and acidic surface patches of proteins, these compounds participate in a large number of cellular processes, ranging from functional modulations of proteins to nucleic acid metabolism and packaging. Therefore, polyamines are essential for cell growth and differentiation, whereas aberrant cellular polyamine level has been implicated in neoplastic transformation.
Human L-Ornithine decarboxylase (ODC;EC 4.1.1.17) catalyzes the first and rate-limiting step in the polyamine biosynthetic pathway, catalyzing the decarboxylation of ornithine to putrescine. Human ODC is a 53 kDa pyridoxal 5’-phosphate (PLP)-dependent enzyme consists of 461 amino acids. The ODC monomer consists of two domains: an N-terminal TIM-like α/β domain and a C-terminal β-sheet domain. The active form of ODC is a head to tail homodimer, and the active site residue Lys69 forms a Schiff-base linkage with PLP. It’s not surprisingly the enzymatic activity of ODC and cellular level is subjected to a tight regulation. As polyamine accumulates, ODC activity is inhibited and targeted for proteasomal degradation by interacting with antizyme (Az), a 26.5 kDa intracellular polyamine-inducible protein that binds ODC to form a non-covalent 1:1 complex. Notably, the Az-mediated degradation via the 26S proteasome bypasses the common requirement of poly-ubiquitination.
In addition to the Az-mediated negative regulation, the intracellular polyamine homeostasis is also regulated by antizyme inhibitor (AzIN), which displays extensive homology to ODC but lacks decarboxylating activity. Because AzI binds Az with higher affinity than ODC binds to Az, ODC can be released form ODC-Az complex in the presence of AzI, it may save ODC from Az-mediated proteasomal degradation.
To decipher how Az recognizes and inhibits ODC, and how Az-binding promotes proteasomal proteolysis of ODC, we have obtained the crystal structure of N-terminal truncated Az in complex with ODC or AzIN. The substantial overlap between the Az-binding surface and the homodimerization interface of ODC readily explains why the formation of a catalytically active ODC dimer is blocked in the presence of Az. Moreover, the assembly of Az-ODC heterodimer results in the juxtaposition of the proposed proteasome-targeting regions of both ODC and Az. The formation of this extensive and exposed surface likely allows the Az-ODC to be efficiently recognized by the 26S proteasome. In addition, NMR spectroscopic analysis reveals that Az-binding affects neither the structure nor dynamics of the ODC C-terminal region, therefore, rather than serving as a proteasome-targeting element, this region likely mediates ODC degradation after the Az-ODC is captured by the proteasome. Our findings also address the functional similarity and uniqueness of different Az isoforms. Finally, the AzIN-Az1 structure suggests how AzIN may effectively compete with ODC for Az1 to restore polyamine production. Take together, our findings provide new structural and mechanistic insights into how the unusual ubiquitin-independent degradation of ODC by the 26S proteasome is achieved.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:51Z (GMT). No. of bitstreams: 1
ntu-104-D94442007-1.pdf: 183463514 bytes, checksum: 5b6ebd9a1b514d8d29a0c97036f1d9ce (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書
中文摘要……………………………………………………………………………...i
Abstract………………………….…………………………………...………………iv
Table of Contents……………………………………………….……….………….vii
List of Abbreviations…………………………………………………………………x
List of Figures………………………………………………….…………...……….xii
List of Tables………………………………………………………………………...xv
1. Introduction…………………………………………………………….……...…..1
1.1 Polyamines………………………………………………………………….1
1.1.1 Introduction to polyamines………………...……………………1
1.1.2 Polyamine metabolism………………………...……….……….2
1.2 Ornithine decarboxylase………………………………...…….…………….4
1.2.1 Structure of ornithine decarboxylase…………………...……….4
1.2.2 Catalytic mechanism of ornithine decarboxylase……...………..5
1.2.3 Ornithine decarboxylase and disease……………......………….7
1.2.4 Degradation mechanism of ornithine decarboxylase......……….8
1.3 Antizyme……………………………………………………….…………10
1.3.1 Structure of antizyme……………………...…………..………10
1.3.2 Antizyme isoform……………………………………..………11
1.3.3 Antizyme inhibitor…………………………...………………..13
1.4 Specific aim……………………………………………………..…………14
2. Materials and Methods…………………………………….………...……...….16
2.1 Materials………………………………………………………….………..16
2.1.1 Biomaterials, reagents and consumables……………..……….16
2.1.2 Instruments and equipment……………………………………19
2.2 Methods……………………………………………………………………19
2.2.1 Construction and Expression of Recombinant Proteins………19
2.2.2 Protein purification……………………………….……...…...22
2.2.3 Dynamic light scattering (DLS) analysis……………………..24
2.2.4 Crystallization……………………………..………...………..24
2.2.5 Structure determination……………………………….………25
2.2.6 ODC homodimer, ODC-Az195-228 and ODC1-423-Az195-228 sample
preparation for NMR analysis……………………..………….27
2.2.7 NMR spectroscopy……………………………………………28
2.2.8 In vitro degradation reaction………………………………...29
2.2.9 Co-immunoprecipitation………………….………...………29
3. Results…………………………………………...………………………………31
3.1 Protein expression and purification…………………….……….…………31
3.1.1 ODC, ODC1-423, Az195-228, ODC-Az195-228, ODC1-423-Az195-228 Expression and Purification………………….………...……..31
3.1.2 AzIN-Az1110-228 Expression and Purification…………………31
3.1.3 Crystallization of the ODC1-423-Az195-228……….…….............32
3.1.4 Crystallization of the AzIN-Az1110-228………………….……..33
3.1.5 Overall of the human ODC-Az195-228 complex crystal
Structure……………………………………………………..33
3.1.6 Az1 inhibits ODC activity by physically blocking assembly of the functional ODC homodimer……………..………..……...35
3.1.7 Az1 -binding primes ODC for ubiquitin-independent proteasome recognition……………………………………………...…….38
3.1.8 Association of the ODC-Az1 complex with the 26S proteasome and the subsequent degradation of the bound ODC can be decoupled……………………………….…………………….40
3.1.9 Functional extrapolation of Az2 and Az3……………………..…43
3.1.10 Structural analysis of the AzIN-Az1 complex……….………….44
3.1.11 Comparison of ODC and AzIN structure reveals the affinity differences on the interaction with Az1…………….…………46
4. Discussions………………………………………………………...…...………..48
4.1 Az1 inhibits ODC activity and promotes ODC for ubiquitin recognition by proteasome…………………………………………..………....………49
4.2 The role of Az isoform in ODC regulation…………….………….………50
4.3 Structural analysis of the AzIN-Az1 complex…………………….……….51
5. Figures…………………………………………………………………………..55
6. Tables…………………………………………………….……………..……..106
7. References……………………………………………………………….….…111
dc.language.isoen
dc.subject蛋白?體zh_TW
dc.subject抗?zh_TW
dc.subject非泛素依賴型降解zh_TW
dc.subject多元胺zh_TW
dc.subject鳥胺酸脫縮?zh_TW
dc.subject抗?抑制蛋白zh_TW
dc.subjectantizymeen
dc.subjectantizyme inhibitoren
dc.subjectpolyaminesen
dc.subjectubiquitin-independent degradationen
dc.subjectornithine decarboxylaseen
dc.subjectproteasomeen
dc.title以抗酶抑制人類鳥胺酸脫羧酶活性暨誘發其經由蛋白酶體降解之結構機轉zh_TW
dc.titleStructural Basis of Antizyme-Mediated Regulation of Polyamine Homeostasisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee曾秀如(Shiou-Ru Tzeng),徐駿森(Chun-Hua Hsu),蕭傳鐙(Chwan-Deng Hsiao),洪慧芝(Hui-Chih Hung),林翰佳(Han-Jia Lin)
dc.subject.keyword多元胺,鳥胺酸脫縮?,抗?,蛋白?體,非泛素依賴型降解,抗?抑制蛋白,zh_TW
dc.subject.keywordpolyamines,ornithine decarboxylase,antizyme,proteasome,ubiquitin-independent degradation,antizyme inhibitor,en
dc.relation.page120
dc.rights.note有償授權
dc.date.accepted2015-08-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
179.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved