Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5363
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹建和
dc.contributor.authorPing Huang Tsaien
dc.contributor.author蔡秉晃zh_TW
dc.date.accessioned2021-05-15T17:56:54Z-
dc.date.available2016-08-11
dc.date.available2021-05-15T17:56:54Z-
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-06-22
dc.identifier.citation1. Kaplan K SB, editors. . Comprehensive textbook of psychiatry. Baltimore:. Williams & Wilkins; 1995.
2. Rowland LR e. Merritt's neurology. Lippincott: Williams & Wilkins; 2005.
3. Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiology of aging 1998;19:173-189.
4. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. American journal of public health 1998;88:1337-1342.
5. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association 2007;3:186-191.
6. Liu HC, Tsou HK, Lin KN, et al. Evaluation of 110 consecutive patients with dementias: a prospective study. Acta neurologica Scandinavica 1991;84:421-425.
7. Liu HC, Lin KN, Teng EL, et al. Prevalence and subtypes of dementia in Taiwan: a community survey of 5297 individuals. Journal of the American Geriatrics Society 1995;43:144-149.
8. Lin RT, Lai CL, Tai CT, Liu CK, Yen YY, Howng SL. Prevalence and subtypes of dementia in southern Taiwan: impact of age, sex, education, and urbanization. Journal of the neurological sciences 1998;160:67-75.
9. Wang W, Wu S, Cheng X, et al. Prevalence of Alzheimer's disease and other dementing disorders in an urban community of Beijing, China. Neuroepidemiology 2000;19:194-200.
10. Zhang MY, Katzman R, Salmon D, et al. The prevalence of dementia and Alzheimer's disease in Shanghai, China: impact of age, gender, and education. Annals of neurology 1990;27:428-437.
11. Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Archives of neurology 2005;62:447-453.
12. Liu HC, Fuh JL, Wang SJ, et al. Prevalence and subtypes of dementia in a rural Chinese population. Alzheimer disease and associated disorders 1998;12:127-134.
13. Bachman DL, Wolf PA, Linn RT, et al. Incidence of dementia and probable Alzheimer's disease in a general population: the Framingham Study. Neurology 1993;43:515-519.
14. Rockwood K, Stadnyk K. The prevalence of dementia in the elderly: a review. Can J Psychiatry 1994;39:253-257.
15. M He, Parlato V, Lese GB, Dabaj A, Forette F, Boller F. Survival in institutionalized patients. Influence of dementia and loss of functional capacities. Archives of neurology 1995;52:469-476.
16. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology 2000;54:2072-2077.
17. Tang MX, Cross P, Andrews H, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology 2001;56:49-56.
18. Foley DJ, Brock DB, Lanska DJ. Trends in dementia mortality from two National Mortality Followback Surveys. Neurology 2003;60:709-711.
19. Bonsignore M, Heun R. Mortality in Alzheimer's disease. Dementia and geriatric cognitive disorders 2003;15:231-236.
20. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Archives of neurology 2001;58:1985-1992.
21. Devanand DP, Folz M, Gorlyn M, Moeller JR, Stern Y. Questionable dementia: clinical course and predictors of outcome. Journal of the American Geriatrics Society 1997;45:321-328.
22. Daly E, Zaitchik D, Copeland M, Schmahmann J, Gunther J, Albert M. Predicting conversion to Alzheimer disease using standardized clinical information. Archives of neurology 2000;57:675-680.
23. Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Archives of neurology 2001;58:397-405.
24. Bennett DA, Wilson RS, Schneider JA, et al. Natural history of mild cognitive impairment in older persons. Neurology 2002;59:198-205.
25. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 2002;59:1594-1599.
26. Busse A, Bischkopf J, Riedel-Heller SG, Angermeyer MC. Mild cognitive impairment: prevalence and incidence according to different diagnostic criteria. Results of the Leipzig Longitudinal Study of the Aged (LEILA75+). The British journal of psychiatry : the journal of mental science 2003;182:449-454.
27. Bruscoli M, Lovestone S. Is MCI really just early dementia? A systematic review of conversion studies. International psychogeriatrics / IPA 2004;16:129-140.
28. Amieva H, Letenneur L, Dartigues JF, et al. Annual rate and predictors of conversion to dementia in subjects presenting mild cognitive impairment criteria defined according to a population-based study. Dementia and geriatric cognitive disorders 2004;18:87-93.
29. Geslani DM, Tierney MC, Herrmann N, Szalai JP. Mild cognitive impairment: an operational definition and its conversion rate to Alzheimer's disease. Dementia and geriatric cognitive disorders 2005;19:383-389.
30. Liu HC, Wang PN, Wang HC, et al. Conversion to dementia from questionable dementia in an ethnic Chinese population. Journal of geriatric psychiatry and neurology 2007;20:76-83.
31. Evans DA, Smith LA, Scherr PA, Albert MS, Funkenstein HH, Hebert LE. Risk of death from Alzheimer's disease in a community population of older persons. American journal of epidemiology 1991;134:403-412.
32. Katzman R, Hill LR, Yu ES, et al. The malignancy of dementia. Predictors of mortality in clinically diagnosed dementia in a population survey of Shanghai, China. Archives of neurology 1994;51:1220-1225.
33. Bowen JD, Malter AD, Sheppard L, et al. Predictors of mortality in patients diagnosed with probable Alzheimer's disease. Neurology 1996;47:433-439.
34. Aguero-Torres H, Fratiglioni L, Guo Z, Viitanen M, Winblad B. Mortality from dementia in advanced age: a 5-year follow-up study of incident dementia cases. J Clin Epidemiol 1999;52:737-743.
35. Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF. Mortality with dementia: results from a French prospective community-based cohort. American journal of epidemiology 2001;154:642-648.
36. Wolfson C, Wolfson DB, Asgharian M, et al. A reevaluation of the duration of survival after the onset of dementia. The New England journal of medicine 2001;344:1111-1116.
37. Brookmeyer R, Corrada MM, Curriero FC, Kawas C. Survival following a diagnosis of Alzheimer disease. Archives of neurology 2002;59:1764-1767.
38. Larson EB, Shadlen MF, Wang L, et al. Survival after initial diagnosis of Alzheimer disease. Annals of internal medicine 2004;140:501-509.
39. Tsai PH, Chen SP, Lin KN, et al. Survival of ethnic Chinese with Alzheimer's disease: a 5-year longitudinal study in Taiwan. Journal of geriatric psychiatry and neurology 2007;20:172-177.
40. Shen ZX. Brain cholinesterases: II. The molecular and cellular basis of Alzheimer's disease. Medical hypotheses 2004;63:308-321.
41. Wenk GL. Neuropathologic changes in Alzheimer's disease. J Clin Psychiatry 2003;64 Suppl 9:7-10.
42. Wenk GL. Neuropathologic changes in Alzheimer's disease: potential targets for treatment. J Clin Psychiatry 2006;67 Suppl 3:3-7; quiz 23.
43. Goedert M, Spillantini MG, Crowther RA. Tau proteins and neurofibrillary degeneration. Brain pathology 1991;1:279-286.
44. Iqbal K, Alonso Adel C, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et biophysica acta 2005;1739:198-210.
45. Chun W, Johnson GV. The role of tau phosphorylation and cleavage in neuronal cell death. Frontiers in bioscience : a journal and virtual library 2007;12:733-756.
46. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 1976;2:1403.
47. Giacobini E. Pharmacotherapy of Alzheimer disease: new drugs and novel strategies. Progress in brain research 1993;98:447-454.
48. Giacobini E. Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer disease and associated disorders 2000;14 Suppl 1:S3-10.
49. Davis RE, Doyle PD, Carroll RT, Emmerling MR, Jaen J. Cholinergic therapies for Alzheimer's disease. Palliative or disease altering? Arzneimittel-Forschung 1995;45:425-431.
50. Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia 1996;7:293-303.
51. Rogers SL. Perspectives in the management of Alzheimer's disease: clinical profile of donepezil. Dementia and geriatric cognitive disorders 1998;9 Suppl 3:29-42.
52. Rogers SL, Doody RS, Mohs RC, Friedhoff LT. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 1998;158:1021-1031.
53. Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology 1998;50:136-145.
54. Greenberg SM, Tennis MK, Brown LB, et al. Donepezil therapy in clinical practice: a randomized crossover study. Archives of neurology 2000;57:94-99.
55. Winblad B, Kilander L, Eriksson S, et al. Donepezil in patients with severe Alzheimer's disease: double-blind, parallel-group, placebo-controlled study. Lancet 2006;367:1057-1065.
56. Frisoni GB. Reimbursement of acetilcholinesterase inhibitors for Alzheimer's disease in Europe. International journal of geriatric psychiatry 2001;16:233-235.
57. Williams BR, Nazarians A, Gill MA. A review of rivastigmine: a reversible cholinesterase inhibitor. Clin Ther 2003;25:1634-1653.
58. Fillit H, Hill J. Economics of dementia and pharmacoeconomics of dementia therapy. Am J Geriatr Pharmacother 2005;3:39-49.
59. Fuh JL, Wang SJ. Cost-effectiveness analysis of donepezil for mild to moderate Alzheimer's disease in Taiwan. International journal of geriatric psychiatry 2008;23:73-78.
60. Getsios D, Blume S, Ishak KJ, Maclaine GD. Cost effectiveness of donepezil in the treatment of mild to moderate Alzheimer's disease: a UK evaluation using discrete-event simulation. PharmacoEconomics 2010;28:411-427.
61. Hanyu H, Tanaka Y, Sakurai H, Takasaki M, Abe K. Atrophy of the substantia innominata on magnetic resonance imaging and response to donepezil treatment in Alzheimer's disease. Neuroscience letters 2002;319:33-36.
62. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H. Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials. BMJ 2005;331:321-327.
63. Cooper JE. On the publication of the Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition (DSM-IV). The British journal of psychiatry : the journal of mental science 1995;166:4-8.
64. Mendez MF. The accurate diagnosis of early-onset dementia. International journal of psychiatry in medicine 2006;36:401-412.
65. Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J. Therapeutic approaches to Alzheimer's disease. Brain : a journal of neurology 2006;129:2840-2855.
66. Hamilton M. Development of a rating scale for primary depressive illness. The British journal of social and clinical psychology 1967;6:278-296.
67. Hamilton M. The assessment of anxiety states by rating. The British journal of medical psychology 1959;32:50-55.
68. O'Brien JT. Role of imaging techniques in the diagnosis of dementia. The British journal of radiology 2007;80 Spec No 2:S71-77.
69. Drzezga A. Diagnosis of Alzheimer's disease with [18F]PET in mild and asymptomatic stages. Behavioural neurology 2009;21:101-115.
70. Fouquet M, Villain N, Chetelat G, Eustache F, Desgranges B. [Cerebral imaging and physiopathology of Alzheimer's disease]. Psychologie & neuropsychiatrie du vieillissement 2007;5:269-279.
71. Folstein MF, Folstein SE, McHugh PR. 'Mini-mental state'. A practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research 1975;12:189-198.
72. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. The British journal of psychiatry : the journal of mental science 1982;140:566-572.
73. Waldemar G, Dubois B, Emre M, et al. Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 2007;14:e1-26.
74. Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer disease and associated disorders 1995;9 Suppl 2:23-28.
75. Stahl SM. The new cholinesterase inhibitors for Alzheimer's disease, Part 2: illustrating their mechanisms of action. J Clin Psychiatry 2000;61:813-814.
76. Stahl SM. The new cholinesterase inhibitors for Alzheimer's disease, Part 1: their similarities are different. J Clin Psychiatry 2000;61:710-711.
77. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nature reviews Drug discovery 2006;5:160-170.
78. Fleischhacker WW, Buchgeher A, Schubert H. Memantine in the treatment of senile dementia of the Alzheimer type. Prog Neuropsychopharmacol Biol Psychiatry 1986;10:87-93.
79. Ditzler K. Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittel-Forschung 1991;41:773-780.
80. Gortelmeyer R, Erbler H. Memantine in the treatment of mild to moderate dementia syndrome. A double-blind placebo-controlled study. Arzneimittel-Forschung 1992;42:904-913.
81. Areosa Sastre A, McShane R, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev 2004:CD003154.
82. Samson WN, van Duijn CM, Hop WC, Hofman A. Clinical features and mortality in patients with early-onset Alzheimer's disease. European neurology 1996;36:103-106.
83. Rossor MN, Fox NC, Freeborough PA, Harvey RJ. Clinical features of sporadic and familial Alzheimer's disease. Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration 1996;5:393-397.
84. Rathmann KL, Conner CS. Alzheimer's disease: clinical features, pathogenesis, and treatment. 1984. Ann Pharmacother 2007;41:1499-1504.
85. Jorm AF, Scott R, Henderson AS, Kay DW. Educational level differences on the Mini-Mental State: the role of test bias. Psychological medicine 1988;18:727-731.
86. Schmand B, Lindeboom J, Hooijer C, Jonker C. Relation between education and dementia: the role of test bias revisited. Journal of neurology, neurosurgery, and psychiatry 1995;59:170-174.
87. Jones RN, Gallo JJ. Education bias in the mini-mental state examination. International psychogeriatrics / IPA 2001;13:299-310.
88. Marin DB, Flynn S, Mare M, et al. Reliability and validity of a chronic care facility adaptation of the Clinical Dementia Rating scale. International journal of geriatric psychiatry 2001;16:745-750.
89. Seigerschmidt E, Mosch E, Siemen M, Forstl H, Bickel H. The clock drawing test and questionable dementia: reliability and validity. International journal of geriatric psychiatry 2002;17:1048-1054.
90. Rosselli M, Tappen R, Williams C, Salvatierra J. The relation of education and gender on the attention items of the Mini-Mental State Examination in Spanish speaking Hispanic elders. Arch Clin Neuropsychol 2006;21:677-686.
91. Wood RY, Giuliano KK, Bignell CU, Pritham WW. Assessing cognitive ability in research: use of MMSE with minority populations and elderly adults with low education levels. J Gerontol Nurs 2006;32:45-54.
92. Tiwari SC, Tripathi RK, Kumar A. Applicability of the Mini-mental State Examination (MMSE) and the Hindi Mental State Examination (HMSE) to the urban elderly in India: a pilot study. International psychogeriatrics / IPA 2009;21:123-128.
93. Schmand B, Eikelenboom P, van Gool WA, Alzheimer's Disease Neuroimaging I. Value of diagnostic tests to predict conversion to Alzheimer's disease in young and old patients with amnestic mild cognitive impairment. Journal of Alzheimer's disease : JAD 2012;29:641-648.
94. Basso M, Yang J, Warren L, et al. Volumetry of amygdala and hippocampus and memory performance in Alzheimer's disease. Psychiatry research 2006;146:251-261.
95. Wright CI, Dickerson BC, Feczko E, Negeira A, Williams D. A functional magnetic resonance imaging study of amygdala responses to human faces in aging and mild Alzheimer's disease. Biological psychiatry 2007;62:1388-1395.
96. Yavuz BB, Ariogul S, Cankurtaran M, et al. Hippocampal atrophy correlates with the severity of cognitive decline. International psychogeriatrics / IPA 2007;19:767-777.
97. BJ F. Fisch and Spehlmann's EEG Primer: Basic Principles of Digital and Analog EEG. 1999.
98. Letemendia F, Pampiglione G. Clinical and electroencephalographic observations in Alzheimer's disease. Journal of neurology, neurosurgery, and psychiatry 1958;21:167-172.
99. Grech R, Cassar T, Muscat J, et al. Review on solving the inverse problem in EEG source analysis. Journal of neuroengineering and rehabilitation 2008;5:25.
100. Gordon EB, Sim M. The E.E.G. in presenile dementia. Journal of neurology, neurosurgery, and psychiatry 1967;30:285-291.
101. Geldmacher DS, Whitehouse PJ. Evaluation of dementia. The New England journal of medicine 1996;335:330-336.
102. Lieberman JA, 3rd, Neubauer DN. Understanding insomnia: Diagnosis and management of a common sleep disorder. The Journal of family practice 2007;56:35A-49A; quiz 50A.
103. Kaplan PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol 2004;21:307-318.
104. Croes EA, van Gool WA, Jansen GH, van Duijn CM. [Creutzfeldt-Jakob disease: diagnosis, incidence, prevention and treatment]. Ned Tijdschr Geneeskd 2002;146:750-754.
105. Consales G, De Gaudio AR. Sepsis associated encephalopathy. Minerva Anestesiol 2005;71:39-52.
106. Clarke M, Newton RW, Klapper PE, Sutcliffe H, Laing I, Wallace G. Childhood encephalopathy: viruses, immune response, and outcome. Dev Med Child Neurol 2006;48:294-300.
107. Fitzpatrick W, Lowry N. PLEDs: clinical correlates. Can J Neurol Sci 2007;34:443-450.
108. Wallace BE, Wagner AK, Wagner EP, McDeavitt JT. A history and review of quantitative electroencephalography in traumatic brain injury. The Journal of head trauma rehabilitation 2001;16:165-190.
109. Roach BJ, Mathalon DH. Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 2008;34:907-926.
110. Iosifescu DV. Prediction of response to antidepressants: is quantitative EEG (QEEG) an alternative? CNS Neurosci Ther 2008;14:263-265.
111. Barry RJ, Johnstone SJ, Clarke AR. A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2003;114:184-198.
112. Barry RJ, Clarke AR, Johnstone SJ. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2003;114:171-183.
113. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research Brain research reviews 1999;29:169-195.
114. Difrancesco MW, Holland SK, Szaflarski JP. Simultaneous EEG/functional magnetic resonance imaging at 4 Tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation. J Clin Neurophysiol 2008;25:255-264.
115. Babloyantz A, Destexhe A. Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences of the United States of America 1986;83:3513-3517.
116. Babloyantz A, Lourenco C. Computation with chaos: a paradigm for cortical activity. Proceedings of the National Academy of Sciences of the United States of America 1994;91:9027-9031.
117. Liebovitch LS. Testing fractal and Markov models of ion channel kinetics. Biophysical journal 1989;55:373-377.
118. Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 1998;454:903-995.
119. Huang W, Shen Z, Huang NE, Fung YC. Engineering analysis of biological variables: an example of blood pressure over 1 day. Proceedings of the National Academy of Sciences of the United States of America 1998;95:4816-4821.
120. Novak V, Yang AC, Lepicovsky L, Goldberger AL, Lipsitz LA, Peng CK. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomedical engineering online 2004;3:39.
121. Hu K, Peng CK, Huang NE, et al. Altered Phase Interactions between Spontaneous Blood Pressure and Flow Fluctuations in Type 2 Diabetes Mellitus: Nonlinear Assessment of Cerebral Autoregulation. Physica A 2008;387:2279-2292.
122. Hu K, Peng CK, Huang NE, et al. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation. Physica a-Statistical Mechanics and Its Applications 2008;387:2279-2292.
123. Hu K, Peng CK, Czosnyka M, Zhao P, Novak V. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations. Cardiovascular engineering 2008;8:60-71.
124. Lo MT, Hu K, Liu Y, Peng CK, Novak V. Multimodal Pressure Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation. EURASIP journal on advances in signal processing 2008;2008:785243.
125. Hu K, Lo M-T, Peng CK, et al. Nonlinear Pressure-Flow Relationship Is Able to Detect Asymmetry of Brain Blood Circulation Associated with Midline Shift. Journal of Neurotrauma 2009;26:227-233.
126. Maestri R, Pinna GD, Accardo A, et al. Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. Journal of cardiovascular electrophysiology 2007;18:425-433.
127. Balocchi R, Menicucci D, Santarcangelo E, et al. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos Solitons & Fractals 2004;20:171-177.
128. Sweeney-Reed CM, Nasuto SJ. A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of computational neuroscience 2007;23:79-111.
129. Schafer C, Rosenblum MG, Kurths J, Abel HH. Heartbeat synchronized with ventilation. Nature 1998;392:239-240.
130. Delprat N, Escudie B, Guillemain P, Kronlandmartinet R, Tchamitchian P, Torresani B. Asymptotic wavelet and gabor analysis - extraction of instantaneous frequencies. IEEE Transactions on Information Theory 1992;38:644-664.
131. Lindsley DB. Psychological phenomena and the electroencephalogram. Electroencephalography and clinical neurophysiology 1952;4:443-456.
132. Tong JH, Chiu CL, Wang CY. Improved synthetic aperture focusing technique by Hilbert-Huang transform for imaging defects inside a concrete structure. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2010;57:2512-2521.
133. Newhouse VL, Furgason ES, Johnson GF, Wolf DA. The dependence of ultrasound doppler bandwidth on beam geometry. IEEE Transactions on Sonics and Ultrasonics 1980;27:50-59.
134. Liddell DW. Investigations of eeg findings in presenile dementia. Journal of Neurology Neurosurgery and Psychiatry 1958;21:173-176.
135. Soininen H, Partanen VJ, Helkala EL, Riekkinen PJ. EEG findings in senile dementia and normal aging. Acta neurologica Scandinavica 1982;65:59-70.
136. Brenner RP, Reynolds CF, Ulrich RF. Diagnostic efficacy of computerized spectral versus visual eeg analysis in elderly normal, demented and depressed subjects. Electroencephalography and clinical neurophysiology 1988;70:P20-P20.
137. Fischer Y, Gahwiler BH, Thompson SM. Activation of intrinsic hippocampal theta oscillations by acetylcholine in rat septo-hippocampal cocultures. Journal of Physiology-London 1999;519:405-413.
138. Leuchter AF, Cook IA, Lufkin RB, et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. NeuroImage 1994;1:208-219.
139. Nuwer MR. Quantitative EEG.1. Techniques and problems of frequency-analysis and topographic mapping. Journal of Clinical Neurophysiology 1988;5:1-43.
140. Lo M-T, Novak V, Peng CK, Liu Y, Hu K. Nonlinear phase interaction between nonstationary signals: A comparison study of methods based on Hilbert-Huang and Fourier transforms. Physical Review E 2009;79.
141. Pfurtscheller G, Andrew C. Event-related changes of band power and coherence: Methodology and interpretation. Journal of Clinical Neurophysiology 1999;16:512-519.
142. Vermersch P, Roche J, Hamon M, et al. White matter magnetic resonance imaging hyperintensity in Alzheimer's disease: Correlations with corpus callosum atrophy. Journal of neurology 1996;243:231-234.
143. Hampel H, Teipel SJ, Alexander GE, et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease - A magnetic resonance imaging analysis. Archives of neurology 1998;55:193-198.
144. Hampel H, Teipel SJ, Alexander GE, et al. Dissociation between region specific corpus callosum atrophy and white matter pathology in Alzheimer's disease. Society for Neuroscience Abstracts 1999;25:590-590.
145. Teipel SJ, Bayer W, Alexander GE, et al. Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer's disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiology of aging 2003;24:85-94.
146. Frederiksen KS, Garde E, Skimminge A, et al. Corpus Callosum Atrophy in Patients with Mild Alzheimer's Disease. Neurodegenerative Diseases 2011;8:476-482.
147. Zhu M, Gao W, Wang X, Shi C, Lin Z. Progression of Corpus Callosum Atrophy in Early Stage of Alzheimer's Disease: MRI Based Study. Academic radiology 2012;19:512-517.
148. Husain AM. Electroencephalographic assessment of coma. Journal of Clinical Neurophysiology 2006;23:208-220.
149. Schmalbrock P, Pruski J, Sun L, Rao A, Monroe JW. Phased array RF coils for high-resolution MRI of the inner ear and brain stem. Journal of computer assisted tomography 1995;19:8-14.
150. Chiaramonti R, Muscas GC, Paganini M, et al. Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology 1997;36:153-158.
151. Etevenon P, Peron-Magnan P, Gueguen B, Ghanem M, Gaches J, Deniker P. [Value of quantitative EEG and EEG mapping in medicine]. Annales de medecine interne 1987;138:13-18.
152. Yener GG, Leuchter AF, Jenden D, Read SL, Cummings JL, Miller BL. Quantitative EEG in frontotemporal dementia. Clin Electroencephalogr 1996;27:61-68.
153. Knott V, Labelle A, Jones B, Mahoney C. Quantitative EEG in schizophrenia and in response to acute and chronic clozapine treatment. Schizophr Res 2001;50:41-53.
154. Rodriguez G, Vitali P, Canfora M, et al. Quantitative EEG and perfusional single photon emission computed tomography correlation during long-term donepezil therapy in Alzheimer's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2004;115:39-49.
155. Dauwels J, Vialatte F, Latchoumane C, Jeong J, Cichocki A. EEG synchrony analysis for early diagnosis of Alzheimer's disease: a study with several synchrony measures and EEG data sets. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2009;2009:2224-2227.
156. Dauwels J, Vialatte F, Cichocki A. Diagnosis of Alzheimer's disease from EEG signals: where are we standing? Current Alzheimer research 2010;7:487-505.
157. Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. NeuroImage 2010;49:668-693.
158. Moretti DV, Babiloni C, Binetti G, et al. Individual analysis of EEG frequency and band power in mild Alzheimer's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2004;115:299-308.
159. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2005;116:2266-2301.
160. Stam KJ, Tavy DL, Jelles B, Achtereekte HA, Slaets JP, Keunen RW. Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson's disease. Brain topography 1994;7:141-150.
161. Stam CJ, Jelles B, Achtereekte HA, Rombouts SA, Slaets JP, Keunen RW. Investigation of EEG non-linearity in dementia and Parkinson's disease. Electroencephalography and clinical neurophysiology 1995;95:309-317.
162. Jeong J. EEG dynamics in patients with Alzheimer's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2004;115:1490-1505.
163. Besthorn C, Zerfass R, Geiger-Kabisch C, et al. Discrimination of Alzheimer's disease and normal aging by EEG data. Electroencephalography and clinical neurophysiology 1997;103:241-248.
164. Babiloni F, Babiloni C, Carducci F, et al. Multimodal integration of EEG and functional magnetic resonance recordings. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2004;7:5311-5314.
165. Pincus SM. Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America 1991;88:2297-2301.
166. Pincus S. Approximate entropy(ApEn) as a complexity measure. Chaos 1995;5:110-117.
167. Abasolo D, Hornero R, Espino P, Poza J, Sanchez C, de la Rosa R. Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2005;116:1826-1834.
168. Abasolo D, Hornero R, Espino P, Escudero J, Gomez C. Electroencephalogram background activity characterization with approximate entropy and auto mutual information in Alzheimer's disease patients. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2007;2007:6192-6195.
169. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000;278:H2039-2049.
170. Ivanov PC, Amaral LA, Goldberger AL, et al. Multifractality in human heartbeat dynamics. Nature 1999;399:461-465.
171. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstattionary heart beat time-series. Chaos 1995;5:82-87.
172. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Physical review E, Statistical, nonlinear, and soft matter physics 2005;71:021906.
173. Wu Z, Huang NE, Long SR, Peng C-K. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America 2007;104:14889-14894.
174. Eckmann JP, Ruelle D. Fundamental limitations for estimating dimensions and Ly
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5363-
dc.description.abstract在此研究中,我們試圖以渾沌(chaos)理論為基礎,Sampling entropy為方法,來分阿滋海默症Alzheimer’s disease (AD)不同時期的腦波複雜度,以提供臨床新的客觀工具,以利AD的診斷與預後評估。
失智症是一認知功能逐漸惡化的疾病,且AD佔了其中最大部份,且隨著年齡的增長,其發生的機率也大幅上升,因此,隨著台灣人口老人化的現象,AD病患也預期會增加。但是,AD的臨床診斷,常因病情進展的緩慢,而延後了2~3年。因此,找到客觀方便的方式,來達到及早診斷及早治療的目的,變的刻不容緩。
目前,臨床上對於AD的診斷,是按照DSM-IV(Diagnostic and Statistical Manual of Psychiatric Disorders 4th ed)診斷標準診斷。雖有如此詳盡的評估,早期AD依舊不容易在早期進行客觀的評估。雖然,有些功能性腦部影像檢查,如functional MRI, positron emission tomography (PET), and single photon emission computed tomography (SPECT),可以提供部分的訊息,以作為臨床診斷的參考,但是,限制於高單價,輻射暴露,及顯影劑注射引起的過敏反應,都使得這些檢查並非極度方便。而腦波圖(Electroencephalography, EEG)為一價格低廉,非侵入性的檢查方式,可以快速取得人類腦部活動的紀錄,且其臨床使用已超過五十年,為一安全性極高的檢查。
但由於過去,對於腦波圖的判讀,是需要倚靠有經驗的神經內科專科醫師,且其對於失智症的評估,只能提供局部慢波的訊息,對於診斷及追蹤,實無多大助益;但是,近年來,由於電腦的發達,及數位訊號處理的進步,數位腦波分析(quantitative EEG)的概念,例如使用傅立葉轉換(Fourier analyses),開始被提出並應用於臨床失智病人腦波的分析。但是,這些基於線性系統的數學模式分析方式,卻只能提供病人與正常人之間的差異,並無法有效提供進一步的應用。而基於非線性系統的近似熵(approximate entropy),可以分析訊號的複雜度,訊號越複雜,其值越高。是在數學模式上比較符合人類生理訊號的非線性特徵,在過去的研究中,也發現在AD的病人中,其雙側顳葉的近似熵會有下降的趨勢。但是,單純的近似熵卻會受到資料的長短,及其潛在的趨勢,而得不到一個穩定的結果,而限制了其應用。在此方面,採樣熵(sampling entropy)則是避免了資料長短的誤差,再藉由此研究中,利用經驗解構模式,來去除潛在的趨勢,使得所得結果更能符合臨床資料,並有機會使腦波圖可以成為一客觀評估失智症的工具。
另一個問題為臨床醫生依舊無法在治療個別病人時,事前預見其治療效果。在這篇論文中,我們試圖用多尺度熵(multiscale entropy)來分析對於乙醯膽鹼酯酶抑製劑治療有效及無效病患腦波圖的差異。以期在治療的初期即能為病患訂定有效的治療方針。
腦波圖,通過非線性數位訊號處理的幫助下,腦波圖的潛藏信息可以被提取用於臨床評估,追蹤,甚至預測治療效果。
zh_TW
dc.description.abstractIn this dissertation, we will develop the computational tools, on the basis of sampling entropy, to evaluate different patterns of complexity activation of the electroencephalography (EEG) in longitudinal changes in the Alzheimer's disease (AD) after the acetylcholinesterase inhibitor (AChE inhibitor).
Alzheimer’s disease is the most common form of dementia. The cause and progression of AD are not well understood. One hypothesis is that AD is caused by reduced synthesis of the neurotransmitter, acetylcholine (ACh). AChE inhibitors are proved as an effective therapy. The diagnosis and evaluation in the early stage dementia is challenging in clinical medicine. Quantitative electroencephalographs (qEEG) provide a potential method to objectively quantify the cortical activations in AD, but they are too insensitive to probe the alteration of EEG in the early AD.
The approximate entropy, which is a non-linear statistic and is able to quantify the irregularity of a time series, was significant lower in the bilateral temporal region in AD patients, in whom the basic pathology is hippocampus atrophy. But there were some bias in approximate entropy, such as inconsistent results, and depending on the data length. Therefore, in order to evaluate different patterns of complexity activation of the EEG in longitudinal changes in AD after the acetyl cholinesterase inhibitor therapy, it is necessary to develop a better method with the sampling entropy. However, a technical issue which has been ignored by most researchers is that the signal should be stationary. In order to resolve the non-stationarity of SaEn in EEG to improve the sensitivity, an empirical mode decomposition (EMD) was applied for detrending in this dissertation.
Twenty-seven AD patients (9M/18F; mean age 74.0±1.5 years) were included. Their initial Minimal Mental Status Examination was 19.3±0.7. They received the first resting awake 30-mine EEG before the therapy. Five of them received a follow-up examination within 6 months after the therapy. The 30-s EEG data without artifacts were selected and analyzed with a new proposed method,“EMD-based detrended-SaEn” to attenuate the influence of intrinsic non-stationarity. The correlation factors in 27 AD patients showed a moderate correlation (0.361-0.523, p < 0.05) between MMSE and EMD-based detrended SaEn in Fp1, Fp2, F4 and T3. There was a high correlation (Correlation coefficient = 0.975, p < 0.05) between the changes of MMSE and the changes of EMD-based detrended-SaEn in F7 in 5 follow-up patients. The dynamic complexity of EEG fluctuations is degraded by pathological degeneration, and EMD-based detrended SaEn provides an objective, non-invasive and non-expensive tool for evaluating and following AD patients.
The other issue, for clinician, it is still not predictable effect in individual patient. In this dissertation, we tried to use multiscale entropy (MSE) in EEG to predict the efficacy of AChE inhibitor. Seventeen newly diagnosed AD patients (9M/8F; mean age 74.6±7.4 years) were enrolled in this study, with an initial MMSE of 18.8±4.5. After 12 months’ therapy of AChE inhibitor, 7 patients (3M/4F; mean age 76.1±7.9 years) were responsive (responder) and 10 patients (6M/4F; 73.5±7.3 years) were non-responsive (non-responder). The major difference between two groups is Slope2 (MSE6 to 20). The area under curve (ROC curve) of Slope2 is 0.871(95% CI = 0.69 - 1). The sensitivity is 85.7% and the specificity is 60% while the cutoff value of Sloep2 is -0.024. MSE of EEG, especially Slope2, is able to be an objective tool to predict the efficacy of AChE inhibitor before the therapy.
By the assistance of non-linear digital signal processing, the embedded information of EEG in AD could be extracted for the clinical evaluation, following up and even prediction the therapeutic effect.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:56:54Z (GMT). No. of bitstreams: 1
ntu-103-D96945003-1.pdf: 2310551 bytes, checksum: 0854ceb8bf6b1a1a068728681a3d7cb4 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
中文摘要 vi
Abstract viii
CHAPTER 1 Introduction 1
1.1 Background 1
1.1.1 Alzheimer’s disease 1
1.1.2 Diagnosis of Alzheimer’s disease 2
1.1.3 Management of Alzheimer’s disease 6
1.2 Motivation 7
1.3 Electroencephalography 7
CHAPTER 2 The non-linearity in Electroencephalography for Alzheimer’ disease 10
2.1 Introduction 10
2.2 Material and Methods: Hilbert Huang Transform 12
2.3 Results 14
2.3.1 Stationarity of temporal–spectral distribution 14
2.3.2 Brain topography 23
2.4 Discussion and Remarks 27
2.5 Conclusion 29
CHAPTER 3 Empirical mode decomposition based detrended sample entropy in EEG for Alzheimer’s disease 30
3.1 Introduction 30
3.2 Materials and Methods 32
3.2.1 Subjects 32
3.2.2 EEG Recordings 34
3.2.3 Signal Processing: Sample Entropy 34
3.2.4 Data Detrending Based on Empirical Mode Decomposition 36
3.2.5 Brain Topography 40
3.2.6 Statistical Analyses 40
3.3 Results 41
3.3.1 Initial EEG Findings 41
3.4 Discussion 47
3.5 Conclusion 52
CHAPETR 4 Predict the efficacy of Acetylcholinesterase inhibitor in Alzheimer’s disease by multiscale entropy in EEG 53
4.1 Introduction 53
4.2 Materials and Methods 54
4.2.1 Patients 54
4.2.2 EEG Recordings 56
4.2.3 Signal Processing and Analysis: Multiscale Entropy Analysis 56
4.3 Statistical Analyses 57
4.4 Result 58
4.5 Discussion 65
4.6 Conclusion 68
CHAPTER 5 Conclusion and Future work 69
References 71
dc.language.isoen
dc.title腦波非線性訊號分析--以阿滋海默症為例zh_TW
dc.titleThe application of non-linear signal processing of electroencephalography in Alzheimer's diseaseen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee王署君,王淵洪,羅孟宗,尹彙文
dc.subject.keyword阿滋海默症,採樣熵,多尺度熵,腦波圖,經驗解構模式,zh_TW
dc.subject.keywordAlzheimer’s disease,Sample entropy,Multiscale Entropy,Electroencephalography,Empirical mode decomposition,en
dc.relation.page97
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-06-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf2.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved