請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳為堅 | |
| dc.contributor.author | Mu-Jung Shieu | en |
| dc.contributor.author | 薛牧融 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:26:32Z | - |
| dc.date.available | 2020-09-14 | |
| dc.date.copyright | 2015-09-14 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | Andreeva, K., Soliman, M. M., Cooper, N. G. (2015). Regulatory networks in retinal ischemia-reperfusion injury. BMC Genomics, 16, 43. Bavamian, S., Mellios, N., Lalonde, J. (2015). Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Molecular Psychiatry, 20(5), 573-584. Begemann, M., Grube, S., Papiol, S., Malzahn, D., Krampe, H., Ribbe, K., Friedrichs, H., Radyushkin, K. A., El-Kordi, A., Benseler, F., Hannke, K., Sperling, S., Schwerdtfeger, D., Thanhauser, I., Gerchen, M. F., Ghorbani, M., Gutwinski, S., Hilmes, C., Leppert, R., Ronnenberg, A., Sowislo, J., Stawicki, S., Stodtke, M., Szuszies, C., Reim, K., Riggert, J., Eckstein, F., Falkai, P., Bickeboller, H., Nave, K. A, Brose, N., Ehrenreich, H. (2010). Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Archives General Psychiatry, 67(9), 879-888. Beveridge, N. J., Cairns, M. J. (2012). MicroRNA dysregulation in schizophrenia. Neurobiology of Disease, 46(2), 263-271. Beveridge, N. J., Gardiner, E., Carroll, A. P., Tooney, P. A., Cairns, M. J. (2010). Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 15(12), 1176-1189. Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., Tran, N., Dedova, I., Cairns, M. J. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17(8), 1156-1168. Carroll, A. P., Tooney, P. A., Cairns, M. J. (2013). Design and interpretation of microRNA-reporter gene activity. Analytical Biochemistry, 437(2), 164-171. Carroll, A. P., Tran, N., Tooney, P. A., Cairns, M. J. (2012). Alternative mRNA fates identified in microRNA-associated transcriptome analysis. BMC Genomics, 13, 561. Eastwood, S. L., Harrison, P. J. (2006). Cellular basis of reduced cortical reelin expression in schizophrenia. American Journal of Psychiatry, 163(3), 540-542. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome Biology, 5(1), R1. Evangelisti, C., Florian, M. C., Massimi, I., Dominici, C., Giannini, G., Galardi, S., Bue, M. C., Massalini, S., McDowell, H. P., Messi, E., Gulino, A., Farace, M. G.,, Ciafre, S. A. (2009). MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB Journal, 23(12), 4276-4287. Fatemi, S. H., Earle, J. A., McMenomy, T. (2000). Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Molecular Psychiatry, 5(6), 654-663, 571. Fatemi, S. H., Kroll, J. L., Stary, J. M. (2001). Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport, 12(15), 3209-3215. Folsom, T. D., Fatemi, S. H. (2013). The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology, 68, 122-135. Forster, E. (2014). Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience, 269, 102-111. Friedman, R. C., Farh, K. K., Burge, C. B., Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92-105. Geaghan, M., Cairns, M. J. (2014). MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Bioloigical Psychiatry. Glatt, S. J., Everall, I. P., Kremen, W. S., Corbeil, J., Sasik, R., Khanlou, N., Han, M., Liew, C. C., Tsuang, M. T. (2005). Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proceedings of the National Academy of Sciences, 102(43), 15533-15538. Gong, J., Diao, B., Yao, G. J., Liu, Y., Xu, G. Z. (2013). Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma. Journal of Genetics, 92(3), 489-497. Guidotti, A., Auta, J., Davis, J. M., Dong, E., Gavin, D. P., Grayson, D. R., Sharma, R. P., Smith, R. C., Tueting, P., Zhubi, A. (2014). Toward the identification of peripheral epigenetic biomarkers of schizophrenia. Journal of Neurogenetics, 28(1-2), 41-52. Guidotti, A., Pesold, C., Costa, E. (2000). New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem Research, 25(9-10), 1207-1218. Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., Andreassen, O. A., Djurovic, S., Melle, I., Agartz, I., Hall, H., Timm, S., Wang, A. G., Werge, T. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One, 2(9), e873. He, L., Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Review Genetics, 5(7), 522-531. Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proceedings of the National Academy of Sciences, 95(26), 15718-15723. Issler, O., Chen, A. (2015). Determining the role of microRNAs in psychiatric disorders. Nature Review Neuroscience, 16(4), 201-212. Kim, A. H., Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J. L., van den Oord, E. J., Riley, B. P., Kendler, K. S., Vladimirov, V. I. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Research, 124(1-3), 183-191. Kiriakidou, M., Nelson, P. T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., Hatzigeorgiou, A. (2004). A combined computational-experimental approach predicts human microRNA targets. Genes Development, 18(10), 1165-1178. Kisliouk, T., Meiri, N. (2013). MiR-138 promotes the migration of cultured chicken embryonic hypothalamic cells by targeting reelin. Neuroscience, 238, 114-124. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495-500. Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., Huang, Y. H., Hsiao, P. C., Hsiao, C. K., Liu, C. M., Yang, P. C., Hwu, H. G.,, Chen, W. J. (2011). MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One, 6(6), e21635. Lee, S. T., Chu, K., Im, W. S., Yoon, H. J., Im, J. Y., Park, J. E., Park, K. H., Jung, K. H., Lee, S. K., Kim, M., Roh, J. K. (2011). Altered microRNA regulation in Huntington's disease models. Exprimental Neurolology, 227(1), 172-179. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115(7), 787-798. Lugli, G., Krueger, J. M., Davis, J. M., Persico, A. M., Keller, F., Smalheiser, N. R. (2003). Methodological factors influencing measurement and processing of plasma reelin in humans. BMC Biochemistry, 4, 9. Megraw, M., Sethupathy, P., Corda, B., Hatzigeorgiou, A. G. (2007). miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Research, 35(Database issue), D149-155. Miller, B. H., Zeier, Z., Xi, L., Lanz, T. A., Deng, S., Strathmann, J., Willoughby, D., Kenny, P. J., Elsworth, J. D., Lawrence, M. S., Roth, R. H., Edbauer, D., Kleiman, R. J., Wahlestedt, C. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National Academy of Sciences, 109(8), 3125-3130. Schmittgen, T. D., Lee, E. J., Jiang, J., Sarkar, A., Yang, L., Elton, T. S., Chen, C. (2008). Real-time PCR quantification of precursor and mature microRNA. Methods, 44(1), 31-38. Sheinerman, K. S., Tsivinsky, V. G., Abdullah, L., Crawford, F., Umansky, S. R. (2013). Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY), 5(12), 925-938. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., Pappas, G. D. (2000). Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proceedings of the National Academy of Sciences, 97(3), 1281-1286. Song, H. T., Sun, X. Y., Zhang, L., Zhao, L., Guo, Z. M., Fan, H. M., Zhong, A. F., Niu, W., Dai, Y. H., Zhang, L. Y., Shi, Z., Liu, X. P., Lu, J. (2014). A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. Journal of Psychiatric Research, 54, 134-140. Stary, C. M., Xu, L., Sun, X., Ouyang, Y. B., White, R. E., Leong, J., Li, J., Xiong, X., Giffard, R. G. (2015). MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke, 46(2), 551-556. 6). Evaluating the comparability of gene expression in blood and brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141b(3), 261-268. Sun, X. Y., Lu, J., Zhang, L., Song, H. T., Zhao, L., Fan, H. M., Zhong, A. F., Niu, W., Guo, Z. M., Dai, Y. H., Chen, C., Ding, Y. F., Zhang, L. Y. (2015). Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. Journal Clinical Neuroscience, 22(3), 570-574. Sun, X. Y., Zhang, J., Niu, W., Guo, W., Song, H. T., Li, H. Y., Fan, H. M., Zhao, L., Zhong, A. F., Dai, Y. H., Guo, Z. M., Zhang, L. Y., Lu, J., Zhang, Q. L. (2015). A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genet, 168b(3), 170-178. Tamminga, C. A., Holcomb, H. H. (2005). Phenotype of schizophrenia: a review and formulation. Journal of Molecular Psychiatry, 10(1), 27-39. Tiribuzi, R., Crispoltoni, L., Porcellati, S., Di Lullo, M., Florenzano, F., Pirro, M., Bagaglia, F., Kawarai, T., Zampolini, M., Orlacchio, A., Orlacchio, A. (2014). miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiology of Aging, 35(2), 345-356. Tsuang, M. (2000). Schizophrenia: genes and environment. Biological Psychiatry, 47(3), 210-220. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes Development, 13(24), 3191-3197. Tylee, D. S., Kawaguchi, D. M., Glatt, S. J. (2013). On the outside, looking in: a review and evaluation of the comparability of blood and brain '-omes'. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162b(7), 595-603. Underhill, G. H., George, D., Bremer, E. G., Kansas, G. S. (2003). Gene expression profiling reveals a highly specialized genetic program of plasma cells. Blood, 101(10), 4013-4021. van Os, J., Kapur, S. (2009). Schizophrenia. Lancet, 374(9690), 635-645. Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Parkinson, H. (2014). The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research, 42(Database issue), D1001-1006. Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., . . . Manji, H. K. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34(6), 1395-1405. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53623 | - |
| dc.description.abstract | 背景與目的:微小核醣核酸表現異常被認為是有潛力可發展成思覺失調症的臨床生物指標,先前研究利用微陣列技術以及即時聚合酶鏈式反應顯示: hsa-miR-34a為思覺失調症患者周邊血液內找出七個表現異常的微小核醣核酸中最顯著表現量偏高的微小核醣核酸。本篇研究主要目的為1)從生物資訊系統中辨認一個miR-34a管控的基因,此基因亦在中樞神經系統中表現,此外此基因在目前文獻中與思覺失調症相關;2)利用報導基因檢測驗證此基因為miR-34a之標的基因,3)量測思覺失調症病人與健康對照組血液中miR-34a與其標的基因的表現量。 方法:利用資料庫(miRGen)搜尋潛miR-34a之標的基因,之後比對全基因組關聯研究資料庫中(GWAS)與思覺失調症相關之基因。依照是否在生物資訊系統中、基因功能、GWAS研究中使用中國人口、GWAS研究中此基因之顯著性之標準,選定絡絲蛋白(Reelin)為本篇研究選定之標的基因。此外,我們利用西方點墨法量測在神經母細胞瘤細胞株不同轉染組(包括對照組、miR-34a模擬組、miR-34a 抑制組)中絡絲蛋白之表現量。利用絡絲蛋白3'非轉譯區之報導基因檢測轉染miR-34a模擬組以及miR-34a 抑制組。最後我們使用11位思覺失調症患者以及年齡性別配對的健康對照組量測其周邊血液之miR-34a以及絡絲蛋白之表現量。 結果:利用西方墨點法發現在微小核醣核酸miR-34a 模擬組的絡絲蛋白基因表現量有劑量效應般的抑制情形,此外在報導基因檢測實驗當中證實微小核醣核酸miR-34a與絡絲蛋白的3'非轉譯區的互動。在思覺失調症患者當中有較高的miR-34a表現量之趨勢。然而,在思覺失調症患者以及健康對照組的周邊血液中無法測量到絡絲蛋白之表現量。在思覺失調症患者與健康對照組中並沒有觀察到miR-34a和絡絲蛋白表現量之顯著差異,但是在絡絲蛋白330 kDa 思覺失調症患者呈現邊際顯著的較高表現量。此外,本研究觀察到在初始收案時,絡絲蛋白表現量(除了330 kDa)與miR-34a的表現量呈現正相關。 討論:本篇研究證實在細胞株當中,絡絲蛋白被miR-34a所調控,然而,在本篇所使用的人類樣本中的周邊血液中無法測量到絡絲蛋白之表現量。進一步量測絡絲蛋白在腦組織中表現量來評估絡絲蛋白在中樞神經系統中表現量異常是否為miR-34a所調控對於深入了解思覺失調症患者的病理生理學有所助益。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:32Z (GMT). No. of bitstreams: 1 ntu-104-R01849048-1.pdf: 903166 bytes, checksum: 5ff1c6df15d3fe4ffdbed08d2f2af42e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 論文口試委員審定書 II 誌謝 III 中文摘要 IV ABSTRACT VI CONTENTS VIII LIST OF TABLES AND FIGURES X 1 INTRODUCTION 1 2 METHOD 5 2.1 Participants 5 2.2 miR-34a target prediction 5 2.3 PBMCs isolation 6 2.4 Cell culture 6 2.5 Transfection 7 2.6 Western blotting 7 2.7 microRNA quantification by RT-PCR 8 2.8 Target Gene Reporter Assay 9 2.9 Statistical analysis 9 3 RESULTS 11 3.1 Prediction of miR-34a target genes 11 3.2 Repression of RELN expression in vitro 11 3.3 Biological activity of miR-34a in RELN 3’UTR 12 3.4 miRNA and RELN expression in schizophrenia patients and healthy controls 13 4 DISCUSSION 15 REFERENCES 20 APPENDICES Table A1. Oligonucleotide sequences of experiment materials 39 Table A2. miR-34a target genes consistent in “miRGen” that have been reported in schizophrenia GWAS studies from November, 2008 to April, 2014.. 40 Figure A1. Undetectable expression level of RELN in SH-SY5Y and SK-N-DZ cell lines by western blot. 42 Figure A2. Troubleshooting of Western blotting to detect RELN. 43 | |
| dc.language.iso | en | |
| dc.subject | 微小核醣核酸34a | zh_TW |
| dc.subject | 絡絲蛋白 | zh_TW |
| dc.subject | 報導基因檢測 | zh_TW |
| dc.subject | 思覺失調症 | zh_TW |
| dc.subject | reporter gene assay | en |
| dc.subject | schizophrenia | en |
| dc.subject | hsa-miR-34a | en |
| dc.title | 思覺失調症患者周邊血液中表現偏高的微小核醣核酸miR-34a與其標的基因絡絲蛋白:生物資訊系統辨認與報導基因檢測驗證 | zh_TW |
| dc.title | Up-regulated microRNA miR-34a in Peripheral Blood of Patients with Schizophrenia and Reelin as Its Target Gene: Identification from Algorithms and Validation in Reporter Gene Assays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 俞松良,郭柏秀,劉智民 | |
| dc.subject.keyword | 思覺失調症,報導基因檢測,微小核醣核酸34a,絡絲蛋白, | zh_TW |
| dc.subject.keyword | schizophrenia,reporter gene assay,hsa-miR-34a, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 882 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
