請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國鎮(Kuo-Chun Cheng) | |
| dc.contributor.author | Wei-Cheng Chiu | en |
| dc.contributor.author | 邱偉誠 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:26:17Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-05 | |
| dc.identifier.citation | [1]M. Bek, A. Oseli, I. Saprunov, N. Holecˇek, B.S. von Bernstorff, and I. Emri, 'Effect of Pressure on Damping Properties of Granular Polymeric Materials,' . In: Qi H. et al. (eds) Challenges in Mechanics of Time-Dependent Materials, vol. 2, Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham , pp. 113-119 , 2015. [2] Marko Bek, Joris Betjes, Bernd-Steffen von Bernstorff, and Igor Emri, 'Viscoelasticity of new generation thermoplastic polyurethane vibration isolators, ' American Institute of Physics, vol. 29, 2017. [3]鉛心橡膠支承(Lead Rubber Bearing), WELL LINK INDUSTRY CO., LTD., Available:https://welllink.com.tw/%E9%89%9B%E5%BF%83%E6%A9%A1%E8%86%A0%E6%94%AF%E6%89%BF [4] 100% carbon fiber CFRP Carbon fiber blocks 20mm thickness, Available: https://www.alibaba.com/product-detail/100-carbon-fiber-CFRP-Carbon-fiber_60041330743.html [5] Qiuyan Yanga, Katja Loos, 'Janus nanoparticles inside polymeric materials: interfacial arrangement toward functional hybrid materials, ' Polymer Chemistry, Issue 4, 2017. [6] M. Bek and I. Emri, 'Viscoelasticity of the New Generation Vibration Insulation / Patented Technological Breakthrough in Vibration and Sound Insulation, ' INNFM Spring Meeting , Lake Vyrnvy, April 10-12, 2017. [7] Igor Emri, 'Dissipative bulk and granular systems technology,' European Patent Specification, EP3570274A1, 2014. [8] Creep description, Long term performance of polymers,Available:http://dept.me.umn.edu/labs/composites/Projects/Polymer%20Heat%20Exchanger/Creep%20description.pdf [9] Rubber Caster Wheels – Hysteresis, BULLDOG, Available: http://www.bulldogcastors.co.uk/blog/rubber-caster-wheels-hysteresis/ [10] Debra Dunson, EAG實驗室,使用動態力學分析(DMA)表徵聚合物, Available:https://eag.com/zh-TW/resources/whitepapers/characterization-polymers-using-dynamic-mechanical-analysis-dma/ [11] Veroniker Effinger, Paul Du Bois, 'Modelling of viscoelastic materials with LS-Dyna, ' 11th German LS-Dyna Forum 2012, Ulm. [12]M. Bek and I. Emri, 'Using hydrostatic pressure to maximize frequency dependent damping properties of thermoplastic polyurethane', In: Antoun B. et al. (eds) Challenges in Mechanics of Time Dependent Materials, vol. 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham, 2017. [13]N.W. TSCHOEGL, WOLFGANG G. KNAUSS and IGOR EMRI, 'The Effect of Temperature and Pressure on the Mechanical Properties of Thermo- and/or Piezorheologically Simple Polymeric Materials in Thermodynamic Equilibrium – A Critical Review, ' Mechanics of Time-Dependent Materials , vol. 6 , pp. 53–99, 2002. [14]Marina Gergesova, Ivan Saprunov, Igor Emri, 'Closed-form solution for horizontal and vertical shiftings of viscoelastic material functions in frequency domain,' Rheol Acta vol. 55, pp. 351–364 , 2016. [15] M. Gergesova,a) B. Zupančič, I. Saprunov, and I. Emri, 'The closed form t-T-P shifting (CFS) algorithm,' Journal of Rheology , vol. 55 , no. 1, January 2011. [16] Marko Bek, Joris Betjes, Nikola Holeček, Alen Oseli and Igor Emri, 'Effect Of Pressure On Shear Relaxation Of Thermoplastic Polyurethane, 'Center for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Slovenia. [17] I. Emri and M. Gergesova, 'TIME-DEPENDENT BEHAVIOR OF SOLID POLYMERS, ' RHEOLOGY, vol. 1 , pp. 247–325, 2010. [18] C. Kukla , L. Slemenik Perše M. Bek , ' Influence of filler types onto the viscosity of highly filled polymers, ' Conference: PMI 2018 - International Conferece on Polymers and Moulds. [19] Marko Bek , Joamin Gonzalez-Gutierrez , Jesus AlejandroMoreno Lopez , Dušan Bregant , Igor Emri , 'Apparatus for measuring friction inside granular materials — Granular friction analyzer,' Powder Technology , vol. 288 , pp. 255–265 , 2016. [20] I. Emri T. Prodan 'A Measuring System for Bulk and Shear Characterization of Polymers,' Society for Experimental Mechanics , vol. 46 , pp. 429–439, 2006. [21] Marko Bek, 'On the use of viscoelastic materials for railroad vibration and noise reduction, ' Faculty of Mechanical Engineering, University of Ljubljana, 2017 [22] LS-DYNA 產品介紹, 勢流科技, Available: https://www.flotrend.com.tw/products/st-ls-dyna/ [23] Tess Legaud, Edith Grippon, Vincent Lapoujade, Pierre-Louis Chiambaretto, Yves Gourinat, 'Application of the Discrete Elements Method to Frequency Analysis and Use of the “Bond” Method for Fracture Modeling,' 14th International LS-DYNA Users Conference. [24]維基百科,「有限元素分析」. Available:https://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%85%83%E5%88%86%E6%9E%90 [25] Y. T. Feng, K. Han and D. R. J. Owen, 'Filling domains with disks: an advancing front approach, ' John Wiley Sons, Ltd , vol. 56 , Issue 5 , 2002. [26] E. A. Flores-Johnson . S. Wang . F. Maggi . A. El Zein . Y. Gan . G. D. Nguyen . Luming Shen, 'Discrete element simulation of dynamic behavior of partially saturated sand,' Int J Mech Mater Des , vol. 12, pp. 495–507 , 2016. [27] T. Svitova, O. Theodoly, S. Christiano, R. M. Hill, and C. J. Radke, 'Wetting Behavior of Silicone Oils on Solid Substrates Immersed in Aqueous Electrolyte Solutions, ' Langmuir , vol. 18 , pp. 6821-6829 , 2002, [28] Ivan Kopal , Marta Harniˇcárová , Jan Valíˇcek ,and Milena Kušnerová , 'Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network, ' Polymers, vol. 9:519; doi:10.3390, 2017. [29] Shaofeng Zhou, Jin Huang and Qiaoxin Zhang, 'Mechanical and tribological properties of polyamide-based composites modified by thermoplastic polyurethane, ' Journal of Thermoplastic Composite Materials, vol. 27(I) , pp. 18-34 , 2012. [30] B. Pinedoa, M. Hadfieldb, I. Tzanakisc, M. Conted, M. Anandb, 'Thermal analysis and tribological investigation on TPU and NBR elastomers applied to sealing applications, ' Tribology International , vol. 127 , pp. 24-36 , 2018. [31]Hailong Teng, 'Discrete Element Method in LS-DYNA, ' LIVERMORE SOFTWARE TECHNOLOGY CORPORATION (LSTC), 2016. [32]LS-DYNA Theory Manual, Material Models, Material Model 76: General Viscoelastic. [33]TPU熱塑性聚酯(醚類)彈性體, 玉順貿易有限公司產品資訊, Available: https://www.yushine68.com/products_detail_137.htm?id=137 [34]吳嘉濠, 'FRP橋面版構件於三點抗彎測試與有限元素分析之研究,' 臺北科技大學土木與防災研究所, 2012. [35]Bok-Won Lee, Chun-Gon Kim, 'Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts, 'Advanced Composite Materials, vol. 21 , pp. 177-192 , April 2012. [36]Aleksandr Cherniaev, John Montesano, Clifford Butcher, 'Modeling the Axial Crush Response of CFRP Tubes using MAT054, MAT058 amd MAT262 in LS-DYNA, ' 15th International LS-DYNA Users Conference, Composites. [37]Michael T. Davidson, Jae H. Chung, Hailong Teng, Zhidong Han, Vinh Le, 'Volume-Averaged Stress States for Idealized Granular Materials using Unbonded Discrete Spheres in LS-DYNA, ' 10th European LS-DYNA Conference 2015, Wurzburg, Germany. [38]陳宏賓, 球體裝填問題, 如何用最少空間裝填最多顆球, Uni Math, 2016, Available:https://sites.google.com/a/g2.nctu.edu.tw/unimath/2016-05/sphere_packing [39]CAMPUS® Datasheet, Ealstollan® 1190A – TPU, BASF Polyurethanes GmbH. [40]CAMPUS® Datasheet, Ealstollan® 1175AW– TPU, BASF Polyurethanes GmbH. [41]CAMPUS® Datasheet, Ealstollan® 1195D – TPU, BASF Polyurethanes GmbH. [42]LS-DYNA Manual R11.0 - Vol I [43]Ahmad Basshofi Habieb, Tavio Tavio, Gabriele Milani1, and Usman Wijaya, '3D-Finite element modeling of lead rubber bearing using high damping material', MATEC Web of Conferences 276, ICAnCEE , 2018. [44]Stefan Burtscher, Alois Dorfmann and Konrad Bergmeister, 'MECHANICAL ASPECTS OF HIGH DAMPING RUBBER', 2nd Int. PhD Symposium in Civil Engineering Budapest , 1998. [45]Yun Huang, Bor-Tsuen Wang, 'Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA, ' 11th International LS-DYNA Useres Conference, Simulation. [46]Masoa TAKESHIMA, Takumi ASAKURA, 'Numerical simulation of vibration damping by granular materials, ' PROCEEDINGS of the 23rd International Congress on Acoustics 9 to 13 September 2019 in Aachen, Germany. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53606 | - |
| dc.description.abstract | 至今,水平隔減震系統已於工程實務上取得成熟的發展,但於垂直向之隔減震尚有相當大的發展空間,因此未來需要研究並開發具垂直隔減震潛能的相關應用,而Igor et al.提出一種新型阻尼裝置之概念,透過黏彈性材料之特徵,其發展勁度及阻尼具可變性,以達吸收能量及消能的效果。本文採用有限元素軟體LS-Dyna模擬基於黏彈性顆粒材料之新型阻尼,探討此裝置於未來工程應用之可行性,並取用Igor et al.理論及專利敘述推得之材料試驗參數,即所指定三種熱塑性聚氨酯(TPU)材料於室溫20度及0.1MPa邊界條件下之應力鬆弛主曲線。 本文建立所提出顆粒型阻尼元件(Granular Damping Element)之LS-Dyna數值模型,包覆方面採用常用於軍事用途且具低密度、高強度之Kelvar KM2纖維,防止顆粒阻尼裝置於高壓下破裂影響其使用性。顆粒方面,材料採用前人試驗所述之三種熱塑性聚氨酯,分別為TPU1190A、1175A及1195D,並於LS-Dyna無網格離散元素法生成所需顆粒,選擇級配於半徑0.5mm至3mm之間黏彈性材料顆粒,以符合多峰分佈之需求。首先,對試體內部進行顆粒填充,以觀察壓力及孔隙率之變化,再對填充後的試體進行單向壓縮試驗獲得其勁度及變形後之強度,亦測試顆粒阻尼裝置於不同預加載下,使用低頻、低速之位移控制循環,測試其能量吸收,並觀察其於逐增預壓下之勁度及阻尼發展情形。 | zh_TW |
| dc.description.abstract | So far, the horizontal vibration isolation system has achieved mature development in engineering practice, but there is still considerable room for development in vertical vibration isolation. Therefore, it is necessary to research and develop related applications which with vertical vibration isolation potential in the future, and Igor et al. proposed the concept of a new type of damping device, which is known as Granular Damping Element. Through the characteristics of viscoelastic materials, the stiffness and damping are changeable to achieve the effect of absorbing energy and dissipating energy. In this study, the finite element software LS-Dyna is used to simulate a new type of damping based on viscoelastic granular materials, and the feasibility of this device in future engineering applications is discussed. The material experiments were derived from the theory and the patent description of Igor et al., which the stress relaxation curves of the specified three thermoplastic polyurethane (TPU) materials were shifted toward the room temperature of 20 degrees and the pressure of 0.1MPa.In this study, the LS-Dyna numerical model of the proposed granular damping element (Granular Damping Element) is established. The coating uses Kelvar KM2 fiber, which is commonly used in military applications and has low density and high strength, to prevent the granular damping device from breaking under high pressure.In terms of particles, the material uses three types of thermoplastic polyurethanes described in previous experiments, namely TPU 1190A, 1175A, and 1195D, and also generates the required particles in the LS-Dyna meshless discrete element method, chooses to grade within the radius of 0.5mm to 3mm viscoelastic material particles to meet the needs of multimodal distribution. First, fill in the test body with particles to observe the changes in pressure and porosity, and then use the one-way compression test to obtain its stiffness and deformation strength after filling. Also, test the granular damping element under different preloads with low-frequency, low-speed displacement control cycle, to obtain the energy absorption, and observe the stiffness and damping development under increasing preload. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:17Z (GMT). No. of bitstreams: 1 U0001-0408202020485100.pdf: 16679585 bytes, checksum: 05d89384943aacc74aeb5c5f4dbcaaea (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 表目錄 ix 圖目錄 xii 第一章 緒論1 1.1 前言及研究動機1 1.2 研究目標2 1.3 本文架構6 第二章 文獻回顧8 2.1 黏彈性理論8 2.2 黏彈性材料曲線移轉21 2.3 顆粒型阻尼元件26 2.3.1 顆粒型阻尼元件工作原理26 2.3.2 顆粒型阻尼元件概念設計28 2.3.3 顆粒行為研究及材料試驗設備30 2.3.4 使用顆粒型阻尼元件減少鐵路振動及降噪研究36 第三章 實驗回顧40 3.1 黏彈性材料實驗40 3.2 顆粒型阻尼元件原型試驗56 3.3 小結60 第四章 數值模擬方法63 4.1 FEM/DEM 63 4.1.1 有限元素法(FEM)63 4.1.2 離散元素法(DEM)64 4.1.3 離散元素邊界接觸設定65 4.1.4 液橋力67 4.1.5 顆粒產生方法69 4.1.6 DEFINE_TRACER_DE70 4.2 LS-DYNA 求解器70 4.3 LS-DYNA材料參數71 4.3.1 黏彈性材料模型71 4.3.2 包覆材料74 4.4 LS-DYNA GDE模型建立78 4.5 小結83 第五章 參數分析84 5.1 顆粒填充測試及尺寸影響84 5.1.1 包覆強化測試86 5.2 單向壓縮試驗91 5.2.1 材料比較93 5.2.2 預壓比較94 5.2.3 側向力量101 5.2.4 彈性及黏彈性材料比較101 5.2.5 高阻尼橡膠材料測試107 5.3 載重位移遲滯迴圈111 5.4 勁度/遲滯面積發展模式116 5.4.1 材料比較118 5.4.2 頻率比較120 5.5 阻尼/耗損模數發展模式122 5.5.1 材料比較124 5.5.2 頻率比較128 5.6 矽油比較137 5.7 小結142 第六章 結論與未來展望144 6.1 結論144 6.2 建議與未來展望146 參考文獻 149 附錄A 153 附錄B 167 | |
| dc.language.iso | zh-TW | |
| dc.subject | 應力鬆弛曲線 | zh_TW |
| dc.subject | 離散元素法 | zh_TW |
| dc.subject | 顆粒型阻尼元件 | zh_TW |
| dc.subject | 靜水壓 | zh_TW |
| dc.subject | 耗損模數 | zh_TW |
| dc.subject | 儲存模數 | zh_TW |
| dc.subject | 黏彈性材料 | zh_TW |
| dc.subject | Stress Relaxation Curve | en |
| dc.subject | Loss Modulus | en |
| dc.subject | Storage Modulus | en |
| dc.subject | Viscoelastic Material | en |
| dc.subject | Discrete Element Method | en |
| dc.subject | Granular Damping Element | en |
| dc.subject | Hydrostatic Pressure | en |
| dc.title | 使用離散元素法模擬基於黏彈性顆粒材料之新型阻尼可行性研究 | zh_TW |
| dc.title | The Feasibility Study On Viscoelastic Granular Materials Based New Generation Vibration Isolators Using Discrete Element Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林子剛(Tzu-Kang Lin),汪向榮(Siang-Jung Wang),吳東諭(Tung-Yu Wu) | |
| dc.subject.keyword | 黏彈性材料,應力鬆弛曲線,儲存模數,耗損模數,靜水壓,顆粒型阻尼元件,離散元素法, | zh_TW |
| dc.subject.keyword | Viscoelastic Material,Stress Relaxation Curve,Storage Modulus,Loss Modulus,Hydrostatic Pressure,Granular Damping Element,Discrete Element Method, | en |
| dc.relation.page | 177 | |
| dc.identifier.doi | 10.6342/NTU202002415 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202020485100.pdf 未授權公開取用 | 16.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
