請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53595
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周必泰(Pi-Tai Chou) | |
dc.contributor.author | Keh-Jiunh Chou | en |
dc.contributor.author | 周克駿 | zh_TW |
dc.date.accessioned | 2021-06-16T02:26:08Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-10 | |
dc.identifier.citation | 1. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740. 2. Carella, A.; Borbone, F.; Centore, R., Research Progress on Photosensitizers for DSSC. 2018, 6 (481). 3. Wang, S.; Tian, J., Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv. 2016, 6 (93), 90082-90099. 4. Sinha, D.; De, D.; Goswami, D.; Ayaz, A., Fabrication of DSSC with Nanostructured ZnO Photo Anode and Natural Dye Sensitizer. Materials Today: Proceedings 2018, 5 (1, Part 2), 2056-2063. 5. Wan, J.; Fang, G.; Yin, H.; Liu, X.; Liu, D.; Zhao, M.; Ke, W.; Tao, H.; Tang, Z., Pt–Ni Alloy Nanoparticles as Superior Counter Electrodes for Dye-Sensitized Solar Cells: Experimental and Theoretical Understanding. 2014, 26 (48), 8101-8106. 6. Saranya, K.; Subramania, A.; Sivasankar, N., Influence of earth-abundant bimetallic (Fe–Ni) nanoparticle-embedded CNFs as a low-cost counter electrode material for dye-sensitized solar cells. RSC Adv. 2015, 5 (54), 43611-43619. 7. Jamalullail, N.; Smohamad, I.; Nnorizan, M.; Mahmed, N., Enhancement of Energy Conversion Efficiency for Dye Sensitized Solar Cell Using Zinc Oxide Photoanode. IOP Conference Series: Materials Science and Engineering 2018, 374, 012048. 8. Sugathan, V.; John, E.; Sudhakar, K., Recent improvements in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 2015, 52, 54-64. 9. Yang, C.-C.; Zhang, H. Q.; Zheng, Y. R., DSSC with a novel Pt counter electrodes using pulsed electroplating techniques. CAP 2011, 11 (1, Supplement), S147-S153. 10. Liu, J.; Tang, Q.; He, B., Platinum-free binary Fe–Co nanofiber alloy counter electrodes for dye-sensitized solar cells. J. Power Sources 2014, 268, 56-62. 11. Tang, Q.; Zhang, H.; Meng, Y.; He, B.; Yu, L., Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells. 2015, 54 (39), 11448-11452. 12. Zhang, H.; Tang, Q.; He, B., Alloying of platinum and molybdenum for transparent counter electrodes. A strategy of enhancing power output for bifacial dye-sensitized solar cells. RSC Adv. 2015, 5 (64), 51600-51607. 13. Yang, P.; Tang, Q., A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell. Appl. Surf. Sci. 2016, 362, 28-34. 14. Yang, P.; Tang, Q., Alloying of Pt with Ni microtubes and Co nanosheets for counter electrode of dye-sensitized solar cell. Mater. Lett. 2016, 164, 206-209. 15. Chang, P.-J.; Cheng, K.-Y.; Chou, S.-W.; Shyue, J.-J.; Yang, Y.-Y.; Hung, C.-Y.; Lin, C.-Y.; Chen, H.-L.; Chou, H.-L.; Chou, P.-T., Tri-iodide Reduction Activity of Shape- and Composition-Controlled PtFe Nanostructures as Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Mater. 2016, 28 (7), 2110-2119. 16. Coccia, F.; Tonucci, L.; Del Boccio, P.; Caporali, S.; Hollmann, F.; d'Alessandro, N., Stereoselective Double Reduction of 3-Methyl-2-cyclohexenone, by Use of Palladium and Platinum Nanoparticles, in Tandem with Alcohol Dehydrogenase. Nanomaterials (Basel, Switzerland) 2018, 8 (10). 17. Zhou, L.-N.; Zhang, X.-T.; Wang, Z.-H.; Guo, S.; Li, Y.-J., Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation. Chem. Commun. 2016, 52 (86), 12737-12740. 18. Lee, W.-Y.; Dao, V.-D.; Choi, H.-S., Shape-controlled synthesis of PtPd alloys as a low-cost and efficient counter electrode for dye-sensitized solar cells. RSC Adv. 2016, 6 (44), 38310-38314. 19. Huang, X.; Li, Y.; Li, Y.; Zhou, H.; Duan, X.; Huang, Y., Synthesis of PtPd Bimetal Nanocrystals with Controllable Shape, Composition, and Their Tunable Catalytic Properties. Nano Lett. 2012, 12 (8), 4265-4270. 20. Lee, Y.-W.; Ko, A. R.; Kim, D.-Y.; Han, S.-B.; Park, K.-W., Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv. 2012, 2 (3), 1119-1125. 21. Liu, Y.; Chi, M.; Mazumder, V.; More, K. L.; Soled, S.; Henao, J. D.; Sun, S., Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of Methanol. Chem. Mater. 2011, 23 (18), 4199-4203. 22. https://www.britannica.com/technology/transmission-electron-microscope. 23. https://www.quora.com/Why-is-a-thin-sample-needed-in-TEM. 24. https://link.springer.com/chapter/10.1007/978-981-10-6156-1_90. 25. https://wiki.anton-paar.com/tw-zh/x-ray-diffraction-xrd/. 26. https://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html. 27. https://www.ossila.com/pages/cyclic-voltammetry. 28. Chiang, C.-C.; Hung, C.-Y.; Chou, S.-W.; Shyue, J.-J.; Cheng, K.-Y.; Chang, P.-J.; Yang, Y.-Y.; Lin, C.-Y.; Chang, T.-K.; Chi, Y.; Chou, H.-L.; Chou, P.-T., PtCoFe Nanowire Cathodes Boost Short-Circuit Currents of Ru(II)-Based Dye-Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%. 2018, 28 (3), 1703282. 29. Gong, Y.; Dong, Y.; Zhao, B.; Yu, R.; Hu, S.; Tan, Z. a., Diverse applications of MoO3 for high performance organic photovoltaics: fundamentals, processes and optimization strategies. Journal of Materials Chemistry A 2020, 8 (3), 978-1009. 30. Yi, Y.; Jeon, P. E.; Lee, H.; Han, K.; Kim, H. S.; Jeong, K.; Cho, S. W., The interface state assisted charge transport at the MoO3/metal interface. 2009, 130 (9), 094704. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53595 | - |
dc.description.abstract | 不同合金比例的鉑鈀奈米粒子成功地以化學方法合成,並且進一步應用於染敏電池的對電極。電池效率量測上,應用元件的表現與對電極合金比例息息相關,所呈現的趨勢為 Pt5Pd5 > Pt7Pd3 > Pt3Pd7 > Pt1Pd9。在此系列材料中,使用Pt5Pd5奈米粒子作為對電極的元件所展現的能量轉換效率高達9.8 %,其表現優於使用Pt薄膜作為對電極的參考元件所得到的效率7.6 %。我們更進一步採用多種電化學量測來進行探討,發現元件電解液中碘離子與三碘離子的自身氧化還原反應的催化會受到鉑鈀材料合金比例影響,且材料催化活性趨勢與其相對應元件間的能量轉換效率趨勢相同。此外,我們以理論計算推估此氧化還原對在不同合金表面的吸脫附行為,可以再次驗證出一致的催化活性趨勢。結合電化學量測及理論計算結果可以清楚說明鉑鈀奈米材料的合金比例對於電解液中三碘離子還原反應的催化行為有明顯的差異,並且會進一步影響染敏電池的效率。 | zh_TW |
dc.description.abstract | PtPd nanocrystals (NCs) with various alloying compositions are strategically prepared through the chemical method and exploited as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The photovoltaic results unveil the composition-dependent trend with a volcano-shaped plot of Pt5Pd5 NCs > Pt7Pd3 NCs > Pt3Pd7 NCs > Pt1Pd9 NCs. Among these NCs, the Pt5Pd5 NCs used as CEs in the DSSC exhibit the highest power conversion efficiency (PCE) of 9.8%, which was superior to the PCE of 7.6% obtained from the reference DSSC with the Pt CE in this study. Also, the electrochemical results reveal the composition-dependent activity along with a volcano-shaped trend in the I−/I3− redox reaction. Further theoretical works support that the catalytic activities of I3− reduction follow a sequence of Pt5Pd5 (111) surface > Pt7Pd3 (111) surface > Pt3Pd7 (111) surface > Pt1Pd9 (111) surface. The combination of electrochemical and theoretical results thus firmly indicate that the composition of PtPd alloying NCs plays an important role in determining their activities toward the I3− reduction reactions and hence the performance of DSSCs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:08Z (GMT). No. of bitstreams: 1 U0001-0408202021045100.pdf: 10051669 bytes, checksum: 7c62029525f3eb4a012367c3069a1e2c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Table of contents iv List of figures vii List of tables xiii Chapter 1 1 Introduction 1 1.1 Dye-sensitized solar cell (DSSC) 1 2.1 Motivation 3 Chapter 2 4 Experiments Analytical techniques 4 2.1 Experimental Sections 4 2.1.1 Synthesis of PtxPd1-x nanocrystals 4 2.1.2 Preparation of I-/I3- electrolyte solution for device fabrication 5 2.1.3 Fabrication of DSSC solar cell 5 2.1.4 Experimental details of electrochemical measurements 7 2.1.5 Computational details of DFT simulations 8 2.2 Principle of analytical techniques 9 2.2.1 Transmission electron microscopy (TEM) 9 2.2.2 Energy-dispersive X-ray spectroscopy (EDS) 11 2.2.3 X-ray diffraction (XRD) 12 2.2.4 I-V measurement 13 2.2.5 Incident photon-to-current efficiency spectroscopy (IPCE) 14 2.2.6 Cyclic Voltammetry (CV) measurement 15 2.2.7 Tafel-polarization plot measurement 16 2.2.8 Electrochemical Impedance Spectroscopy (EIS) measurement 18 Chapter 3 19 Results and discussions 19 3.1 Characterization of PtPd NCs 19 3.1.1 TEM and HRTEM analysis of PtPd NCs 19 3.1.2 Elemental analysis and XRD results of PtPd NCs 23 3.2 Photovoltaic performances of DSSCs 27 3.3 Electrochemical measurements 32 3.3.1 Cyclic voltammetry measurements of PtPd NCs and Pt thin film 32 3.3.2 Tafel polarization measurements of PtPd NCs and Pt thin film 33 3.3.3 Electrochemical impedance spectroscopy (EIS) measurements of PtPd NCs and Pt thin film 36 3.3.4 Comparison of the results from electrochemical measurements 38 3.4 Theoretical computational works 40 Chapter 4 47 Conclusion 47 Chapter 5 48 Research in other fields 48 5.1 MAPbI3 perovskite solar cell 48 5.1.1 Experimental section 48 5.1.2 Result and discussion 49 5.2 Green CdSe quantum dot light emitting diode 51 5.2.1 Experimental section 51 5.2.2 Result and discussion 52 Reference 62 | |
dc.language.iso | en | |
dc.title | 鉑鈀合金奈米粒子對三碘離子還原反應催化的探討 | zh_TW |
dc.title | Enhancing the Catalytic activity of Tri-iodide Reduction by Tuning the Surface Electronic Structure of PtPd Alloy Nanocrystals | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪文誼(Wen-Yi Hung),何美霖(Mei-Lin Ho) | |
dc.subject.keyword | 鉑鈀合金,奈米粒子,染敏電池,三碘離子還原反應, | zh_TW |
dc.subject.keyword | Platinum Palladium alloys,nanoparticle,dye-sensitized solar cell,tri-iodide reduction reaction, | en |
dc.relation.page | 63 | |
dc.identifier.doi | 10.6342/NTU202002416 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0408202021045100.pdf 目前未授權公開取用 | 9.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。