請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53594
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡偉博(Wei-Bor Tsai) | |
dc.contributor.author | Pei-Ju Chen | en |
dc.contributor.author | 陳姵汝 | zh_TW |
dc.date.accessioned | 2021-06-16T02:26:07Z | - |
dc.date.available | 2025-12-31 | |
dc.date.copyright | 2015-09-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-05 | |
dc.identifier.citation | 1. Ratner BD, Bryant SJ, Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering, 2004. 6: p.41-75. 2. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM, A Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p.5605-5620. 3. Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM, Surveying for Surfaces that Resist the Adsorption of Proteins. Journal of the American Chemical Society, 2000. 122(34): p.8303-8304. 4. Kasemo B, Biological surface science. Surface Science, 2002. 500(1-3): p.656-677. 5. Vogler EA, Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998. 74: p.69-117. 6. Lin P, Lin CW, Mansour R, Gu F, Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors Bioelectronics, 2013. 47: p.451-460. 7. Hoffman AS, Non-fouling surface technologies. Journal of Biomaterials Science-Polymer Edition, 1999. 10(10): p.1011-1014. 8. Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY, Inhibition of Bacterial Adhesion and Biofilm Formation on Zwitterionic Surfaces. Biomaterials, 2007. 28(29): p.4192-4199. 9. Zhang Z, Cheng G, Carr LR, Vaisocherova H, Chen SF, Jiang SY, The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 2008. 29(36): p.4719-4725. 10. Li GZ, Cheng G, Xue H, Chen SF, Zhang FB, Jiang SY, Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p.4592-4597. 11. Li GZ, Xue H, Cheng G, Chen SF, Zhang FB, Jiang SY, Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. Journal of Physical Chemistry B, 2008. 112(48): p.15269-15274. 12. Zhang Z, Zhang M, Chen SF, Horbetta TA, Ratner BD, Jiang SY, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p.4285-4291. 13. Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p.4285-4291. 14. Dalsin JL, Hu B-H, Lee BP, Messersmith PB, Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces. Journal of the American Chemical Society, 2003. 125(14): p.4253-4258. 15. Shen MM, Laura; Wagner, Matthew S.; Castner, David G.; Ratner, Buddy D.; Horbett, Thomas A., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2002 13: p.367-390. 16. Luk Y-Y, Kato M, Mrksich M, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p.9604-9608. 17. Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE, Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules, 2006. 7(3): p.703-709. 18. Wang GJ, Fang YN, Kim P, Hayek A, Weatherspoon MR, Perry JW, Sandhage KH, Marder SR, Jones SC, Layer-By-Layer Dendritic Growth of Hyperbranched Thin Films for Surface Sol-Gel Syntheses of Conformal, Functional, Nanocrystalline Oxide Coatings on Complex 3D (Bio)silica Templates. Advanced Functional Materials, 2009. 19(17): p.2768-2776. 19. Weber T, Bechthold M, Winkler T, Dauselt J, Terfort A, Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials. Colloids and Surfaces B-Biointerfaces, 2013. 111: p.360-366. 20. Vandenberg EJ, Polymerization of Glycidol and its Derivatives - A New Rearrangement Polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 1985. 23(4): p.915-949. 21. Siegers C, Biesalski M, Haag R, Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chemistry-a European Journal, 2004. 10(11): p.2831-2838. 22. Tosatti S, De Paul SM, Askendal A, Vandevondele S, Hubbell JA, Tengvall P, Textor M, Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials, 2003. 24(27): p.4949-4958. 23. Weinhart M, Becherer T, Schnurbusch N, Schwibbert K, Kunte HJ, Haag R, Linear and Hyperbranched Polyglycerol Derivatives as Excellent Bioinert Glass Coating Materials. Advanced Engineering Materials, 2011. 13(12): p.B501-B510. 24. Zill A, Rutz AL, Kohman RE, Alkilany AM, Murphy CJ, Kong H, Zimmerman SC, Clickable polyglycerol hyperbranched polymers and their application to gold nanoparticles and acid-labile nanocarriers. Chemical Communications, 2011. 47(4): p.1279-1281. 25. Weber T, Gies Y, Terfort A, Bacteria-Repulsive Polyglycerol Surfaces by Grafting Polymerization onto Aminopropylated Surfaces. Langmuir, 2012. 28(45): p.15916-15921. 26. Boulares-Pender A, Prager A, Reichelt S, Elsner C, Buchmeiser MR, Functionalization of Plasma-Treated Polymer Surfaces with Glycidol. Journal of Applied Polymer Science, 2011. 121(5): p.2543-2550. 27. Zhou L, Gao C, Xu WJ, Robust Fe3O4/SiO2-Pt/Au/Pd Magnetic Nanocatalysts with Multifunctional Hyperbranched Polyglycerol Amplifiers. Langmuir, 2010. 26(13): p.11217-11225. 28. Hayward JA, Chapman D, Biomembrane Surfaces as Models for Polymer Design - The Potential for Hemocompatibility. Biomaterials, 1984. 5(3): p.135-142. 29. Lewis AL, Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B-Biointerfaces, 2000. 18(3-4): p.261-275. 30. Nakabayashi N, Iwasaki Y, Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering, 2004. 14(4): p.345-354. 31. Feng W, Zhu SP, Ishihara K, Brash JL, Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir, 2005. 21(13): p.5980-5987. 32. Ma YH, Tang YQ, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage JP, Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules, 2003. 36(10): p.3475-3484. 33. Ueda T, Ishihara K, Nakabayashi N, Adsorption-Desorption of Proteins on Phospholipid Polymer Surfaces Evaluated by Dynamic Contact-Angle Measurement. Journal of Biomedical Materials Research, 1995. 29(3): p.381-387. 34. Lowe AB, Billingham NC, Armes SP, Synthesis and properties of low-polydispersity poly(sulfopropylbetaine)s and their block copolymers. Macromolecules, 1999. 32(7): p.2141-2148. 35. Kathmann EE, White LA, Mccormick CL, Water soluble polymers .70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997. 38(4): p.879-886. 36. Lee WF, Huang GY, Poly(sulfobetaine)s and corresponding cationic polymers .5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide maleic anhydride copolymer. Polymer, 1996. 37(19): p.4389-4395. 37. Laschewsky A, Touillaux R, Hendlinger P, Vierengel A, Charactrization of Sulfobetaine Monomers by Nuclear-MagneticC-Resonance Spectroscopy - A Note. Polymer, 1995. 36(15): p.3045-3049. 38. Lowe AB, Mccormick CL, Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002. 102(11): p.4177-4189. 39. Chen H, Yuan L, Song W, Wu ZK, Li D, Biocompatible Polymer Materials: Role of Protein-surface Interactions. Progress in Polymer Science, 2008. 33(11): p.1059-1087. 40. Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N, Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar Group and its Mechanism. Journal of Biomedical Materials Research, 1992. 26(12): p.1543-1552. 41. Chang Y, Liao SC, Higuchi A, Ruaan RC, Chu CW, Chen WY, A Highly Stable Nonbiofouling Surface with Well-packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p.5453-5458. 42. Zhang Z, Chen SF, Jiang SY, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p.3311-3315. 43. Chang Y, Chen SF, Zhang Z, Jiang SY, Highly Protein-Resistant Coatings from Well-defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22(5): p.2222-2226. 44. Zhang Z, Chen SF, Chang Y, Jiang SY, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B, 2006. 110(22): p.10799-10804. 45. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008. 9(5): p.1357-1361. 46. Emmenegger CR, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB, Interaction of Blood Plasma with Antifouling Surfaces. Langmuir, 2009. 25(11): p.6328-6333. 47. Yang W, Chen SF, Cheng G, Vaisocherova H, Xue H, Li W, Zhang JL, Jiang SY, Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 2008. 24(17): p.9211-9214. 48. Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang SY, Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 2008. 80(20): p.7894-7901. 49. Zhang Z, Chao T, Chen SF, Jiang SY, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p.10072-10077. 50. Keefe AJ, Jiang SY, Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 2012. 4(1): p.60-64. 51. Jiang SY, Cao ZQ, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials, 2010. 22(9): p.920-932. 52. Ma HW, Hyun JH, Stiller P, Chilkoti A, 'Non-fouling' oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 2004. 16(4): p.338-+. 53. Huangfu PB, Gong M, Zhang CF, Yang S, Zhao J, Gong YK, Cell outer membrane mimetic modification of a cross-linked chitosan surface to improve its hemocompatibility. Colloids and Surfaces B-Biointerfaces, 2009. 71(2): p.268-274. 54. Kazuhiko Ishihara HOYETUaWNN, Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research, 1992. 26(12): p.1543-1552. 55. Chang Y, Chen S, Zhang Z, Jiang S, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22(5): p.2222-2226. 56. Chen HY, Lahann J, Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir, 2011. 27(1): p.34-48. 57. Bryant WA, Fundamentals of Chemical Vapor-Deposition. Journal of Materials Science, 1977. 12(7): p.1285-1306. 58. Choy KL, Chemical vapour deposition of coatings. Progress in Materials Science, 2003. 48(2): p.57-170. 59. Yang R, Asatekin A, Gleason KK, Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter, 2012. 8(1): p.31-43. 60. Gorham WF, A New General Synthetic Method for Preparation of Linear Poly-P-Xylylenes. Journal of Polymer Science Part a-1-Polymer Chemistry, 1966. 4(12PA): p.3027- . 61. Tsai MY, Chen YC, Lin TJ, Hsu YC, Lin CY, Yuan RH, Yu JS, Teng MS, Hirtz M, Chen MHC, Chang CH, Chen HY, Vapor-Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifi cations. Advanced Functional Materials, 2014. 24(16): p.2281-2287. 62. Zhang Q, Wei F Advanced Hierarchical Nanostructured Materials. 2014. p.464-469. 63. Chen HY, Lai JH, Jiang XW, Lahann J, Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Advanced Materials, 2008. 20(18): p.3474-+. 64. Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB, Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation. Biomacromolecules, 2011. 12(12): p.4348-4356. 65. Chien HW, Chang TY, Tsai WB, Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films. Biomaterials, 2009. 30(12): p.2209-2218. 66. To Y, Hasuda H, Sakuragi M, Tsuzuki S, Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomaterialia, 2007. 3(6): p.1024-1032. 67. Kolb HC, Sharpless KB, The growing impact of click chemistry on drug discovery. Drug Discovery Today, 2003. 8(24): p.1128-1137. 68. Lutz JF, Copper-free azide-alkyne cycloadditions: New insights and perspectives. Angewandte Chemie-International Edition, 2008. 47(12): p.2182-2184. 69. Nandivada H, Chen HY, Bondarenko L, Lahann J, Reactive polymer coatings that 'click''. Angewandte Chemie-International Edition, 2006. 45(20): p.3360-3363. 70. Khan M, Huck WTS, Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization. Macromolecules, 2003. 36(14): p.5088-5093. 71. Sauerbrey G, Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Zeitschrift Fur Physik, 1959. 155(2): p.206-222. 72. Chang Y, Yandi W, Chen W-Y, Shih Y-J, Yang C-C, Chang Y, Ling Q-D, Higuchi A, Tunable Bioadhesive Copolymer Hydrogels of Thermoresponsive Poly(N-isopropyl acrylamide) Containing Zwitterionic Polysulfobetaine. Biomacromolecules, 2010. 11(4): p.1101-1110. 73. He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S, Molecular Simulation Studies of Protein Interactions with Zwitterionic Phosphorylcholine Self-Assembled Monolayers in the Presence of Water. Langmuir, 2008. 24(18): p.10358-10364. 74. Gunawan RC, King JA, Lee BP, Messersmith PB, Miller WM, Surface presentation of bioactive ligands in a nonadhesive background using DOPA-tethered biotinylated poly(ethylene glycol). Langmuir, 2007. 23(21): p.10635-43. 75. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y, Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p.571-576. 76. Takezawa T, Mori Y, Yoshizato K, Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y), 1990. 8(9): p.854-6. 77. Okano T, Yamada N, Sakai H, Sakurai Y, A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res, 1993. 27(10): p.1243-51. 78. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T, Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules, 2003. 4(2): p.344-9. 79. Hyeong Kwon O, Kikuchi A, Yamato M, Okano T, Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials, 2003. 24(7): p.1223-32. 80. Li X, Cai T, Chung TS, Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(ether sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environmental Science Technology, 2014. 48(16): p.9898-9907. 81. Moore E, Delalat B, Vasani R, Mcphee G, Thissen H, Voelcker NH, Surface-Initiated Hyperbranched Polyglycerol as an Ultralow-Fouling Coating on Glass, Silicon, and Porous Silicon Substrates. Acs Applied Materials Interfaces, 2014. 6(17): p.15243-15252. 82. Moore E, Delalat B, Vasani R, Thissen H, Voelcker NH, Patterning and Biofunctionalization of Antifouling Hyperbranched Polyglycerol Coatings. Biomacromolecules, 2014. 15(7): p.2735-2743. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53594 | - |
dc.description.abstract | 細胞與生物材料相互作用是許多醫療設備,如血液接觸的設備,生物傳感器和植入物的性能表現的關鍵。生物材料的表面改質是一項常見的戰略,用以控制材料和生物系統間的界面交互作用。可應用到大多數材料的簡易表面改質技術是被高度期望的。藉由化學氣相沉積(Chemical Vapor Deposition ,CVD)的功能性聚對二甲苯超薄層沉積可以適用於各種各樣的基材。 在這項研究中,我們製備炔官能基塗層並且經由點擊化學接上含疊氮化物(Az)的分子。合成被接枝的疊氮分子聚合物,然後藉由點擊化學固定在CVD-炔基基材上。我們發現所沉積的聚合物層是穩定的,並能調節細胞間的相互作用。P(SBMA)與PEGMA可以抗蛋白質吸附和細胞貼附,而PNIPAAm可以藉由其熱敏感反應特性,製作細胞薄片(cell sheet)。我們指出在CVD-炔基基材是一個很好的平台製造功能性表面去調節細胞與材料間交互作用。 在第二部分中,我們利用開環聚合的方式在CVD-OH表面上製造高度分支化聚丙三醇的抗髒污表面。此外,我們還利用開環聚合的方式製造具有尾端烯基的反應性表面。接著我們使用硫醇基分子形成特異性粘附表面,如RGD-SH和生物素-PEG-SH。高度分支化聚丙三醇表面與具有烯基官能基的表面還提供了抗細胞的背景,同時提供烯基可聚合其它分子。我們已經證明在表面可用與RGD-SH的結合以增強細胞附著和生物素-PEG-SH的專一性抗生物素蛋白- FITC結合。我們的方法提供了一個簡單的工具來製作具有可以控細胞親和性的表面。 | zh_TW |
dc.description.abstract | Cell-biomaterial interaction is critical for the performance of many medical devices such as blood-contacting devices, biosensors and implants. Surface modification of biomaterials is a common strategy to control interfacial interactions between materials and biological systems. A facile surface modification technique that could be applied to most materials is highly desirable. Deposition of an ultra-thin layer of functional poly-(p-xylylenes) via chemical-vapor-deposition of [2.2]paracyclophanes could be applied to a wide variety of substrates. In this study, we prepared an alkyne-functionalized coating on which azide (Az)-containing molecules could be conjugated via click chemistry. Several polymers that are grafted with azido molecules were synthesized and then immobilized on the CVD-alkyne substrates via click chemistry. We found that the deposited polymer layers were stable and could modulate cell interactions. The non-fouling P(SBMA) and PEGMA resist protein adsorption and cell adhesion, while the PNIPAAm substrate could be used to fabricate cell sheets by its thermo-responsive property. We demonstrate that the CVD-alkyne substrate is a good platform for the fabrication of functional surfaces in order to modulate of cell-material interactions. In the second part, we create a nonfouling surface by hyperbranched polyglycerol ring-opening polymerization on the CVD-OH coated surface. Moreover, we also create a reactive surface by the ring-opening polymerization which provide terminal alkenyl group. Then we use the molecules with thiol group, RGD-SH and biotin-PEG-SH, to form specific adhesion surface. Furthermore, hyperbranched polyglycerol surface with functional alkenyl group provided a cell-resisting background surface, at the same time providing accessible functional alkenyl group can be conjugated to the other molecules. We have demonstrated that the surface can be used for the binding of RGD-SH to enhance the cell attachment and the binding of biotin-PEG-SH to the specific binding of avidin-FITC. Our polymerization method provides a simple tool to fabricate surfaces with controllable cell affinity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:07Z (GMT). No. of bitstreams: 1 ntu-104-R02524057-1.pdf: 4026576 bytes, checksum: 6d82574bf4957cc981edadcd2cee997c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 (I) 摘要 (III) Abstract (V) Content (IX) List of Tables (XV) List of Figures (XVII) Chapter 1 Introduction (1) 1.1 Nonfouling surfaces (1) 1.2 Poly(ethylene glycol) (PEG) (5) 1.3 Zwitterionic polymers (8) 1.3.1 2-Methacryloyloxyethyl Phosphorylcholine (MPC) (9) 1.3.2 Sulfobetaine Methacrylate (SBMA) and CarboxybetaineMathacrylate (CBMA) (10) 1.4 Surface Modification by Nonfouling Materials (14) 1.4.1 Graft-from Method (Graft Polymerization) (14) 1.4.2 Graft-to Method (16) 1.4.3 Chemical Vapor Deposition (CVD) for Surface Functionalization (19) 1.5 Research Motivation and Specific Aims (22) 1.6 Research Framework (24) Chapter 2 Materials and Methods (25) 2.1 Chemicals (25) 2.1.1 Synthesis of P(SBMA-co-Az), P(PEGMA-co-Az) and P(PNIPAAm-co-Az) (25) 2.1.2 Fabrication of Hyperbranched Polyglycerol Surface (25) 2.1.3 Cell Culture of Murine Skeletal Muscle Cell Line C2C12 and Mouse Fibroblast-Like Cell Line L929 (26) 2.1.4 Platelet Adhesion Experiment and Number Determination (Lactate Dehydrogenase, LDH Assay) (26) 2.2 Experimental Instrument and Consumable Materials (27) 2.2.1 Experimental Instrument (27) 2.2.2 Consumable Materials (28) 2.3 Solution Formula (29) 2.3.1 Phosphate Buffered Saline Solution (PBS), pH 7.4.(29) 2.3.2 Click chemistry catalyst solution (29) 2.3.3 P(SBMA-co-Az) solution (29) 2.3.4 P(PEGMA-co-Az) solution (29) 2.3.5 P(PNIPAAm-co-Az) solution (30) 2.3.6 Dulbecco’S Modified Eagle Medium (DMEM) High Glucose Culture Medium (30) 2.3.7 Alpha Minimum Essential Medium (α-MEM) Culture Medium (30) 2.3.8 Platelet Adhesion Experiment (31) 2.3.9 Lactate Dehydrogenase (LDH) Assay (31) 2.4 Methods (32) 2.4.1 Synthesis of Acrvlovl 4-azobenzene (Az) Crosslinker (32) 2.4.2 Synthesis of poly((sulfobetaine methacrylate)-co-(acrvlovl 4-azobenzene)) (P(SBMA-co-Az)) (33) 2.4.3 Synthesis of poly((poly(ethylene glycol) methacrylate)-co-(acrvlovl 4-azobenzene)) (P(PEGMA -co-Az)) (34) 2.4.4 Synthesis of poly((poly(N-isopropylacrylamide)-co-(acrvlovl 4-azobenzene)) (P(PNIPAAm -co-Az)) (34) 2.4.5 Surface modification by click chemistry (35) 2.4.6 Prepare of Hyperbranched Polyglycerol on CVD-OH Surface (39) 2.4.7 Prepare of Reactive Group Modified Surface on Hyperbranched Polyglycerol Layers (41) 2.4.8 XPS Analysis (43) 2.4.9 Water contact angle (WCA) (44) 2.4.10 Cell Adhesion Experiment for Determining Antifouling Ability (45) 2.4.11 Platelet Purification,Adhesionand Quantitation by Lactate Dehydrogenase (LDH) Assay (45) 2.4.12 Protein Adsorption and Quantitation by Quartz Crystal Microbalance (QCM) Assay (47) 2.4.13 Avidin-FITC Quantitation by the fluorophotometer 49 2.4.14 Statistical analysis (50) Chapter 3 The Surface Property and Characterization of Zwitterionic Polymer P(SBMA-co-Az) Modified by Click Chemistry (51) 3.1 P(SBMA-co-Az) Polymer Characterization (NMR) (51) 3.2 Surface Characterization (51) 3.3 Cell Adhesion on P(SBMA-co-Az) Modified Surfaces (53) 3.4 Platelet Ahesionon P(SBMA-co-Az) Modified Surfaces (54) 3.5 Protein Adsorptionon P(SBMA-co-Az) Modified Surfaces (54) 3.6 Stability between UV Crosslinking and by Click Chemistry (55) 3.7 The Surface Property and Characterization of Other Functional Polymer P(PEGMA-co-Az) or P(PNIPAAm-co-Az) modified by Click Chemistry (56) 3.7.1 The Polymer Characterization (NMR) (56) 3.7.2 The Nonfouling Property of PEGMA Modified Surface (57) 3.7.3 The Cell Sheet Property of PNIPAAm Modified Surface (57) 3.8 Discussion (58) Chapter 4 The Surface Property and Characterization of Hyperbranched Polyglycerol on CVD – OH surface (81) 4.1 The Nonfouling Ability (81) 4.1.1 Surface Characterization (81) 4.1.2 Cell Adhesion on Hyperbranched Polyglycerol Modified Surfaces (82) 4.1.3 Platelet Adhesion on Hyperbranched Polyglycerol Modified Surfaces (83) 4.2 Reactive Surface Modification (84) 4.2.1 Surface Characterization (84) 4.2.2 RGD-SH (L929 adhesion) (85) 4.2.3 Biotin-PEG-SH (Avidin-FITC specific adsorption) (85) 4.3 Discussion (86) Chapter 5 Conclusions (97) Reference (99) Appendix (109) | |
dc.language.iso | en | |
dc.title | 化學氣相沉積功能性聚對二甲苯鍍膜用於製備抗垢基材 | zh_TW |
dc.title | Fabrication of anti-fouling substrates on chemical vapor-deposited functionalized poly(p-xylylene) coatings | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳賢燁(Hsien-Yeh Chen),游佳欣(Jiashing Yu),蔡曉雯(Shiao-Wen Tsai) | |
dc.subject.keyword | 化學氣相沉積,聚對二甲苯,抗生物性貼附,熱敏感物質,點擊化學,聚丙三醇,生物素, | zh_TW |
dc.subject.keyword | chemical vapor deposition,poly(p-xylylene),anti-fouling,thermo-responsive,click chemistry,polyglycerol,biotin, | en |
dc.relation.page | 110 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。