Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊雅惠
dc.contributor.authorYun-Ning Changen
dc.contributor.author張芸寧zh_TW
dc.date.accessioned2021-06-16T02:26:06Z-
dc.date.available2025-08-05
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citation1. Crispe, I.N., The Liver as a Lymphoid Organ. Annual Review of Immunology, 2009. 27(1): p. 147-163.
2. Invernizzi, P., C. Selmi, and M.E. Gershwin, Update on primary biliary cirrhosis. Digestive and Liver Disease, 2010. 42(6): p. 401-408.
3. Kaplan, M.M. and M.E. Gershwin, Primary Biliary Cirrhosis. New England Journal of Medicine, 2005. 353(12): p. 1261-1273.
4. Lleo, A., et al., Immunology of primary biliary cirrhosis and primary sclerosing cholangitis, in Pathogenesis and Clinical Practice in Gastroenterology, I. Ferkolj, et al., Editors. 2008, Springer Netherlands. p. 191-207.
5. Hirschfield, G.M. and M.E. Gershwin, The Immunobiology and Pathophysiology of Primary Biliary Cirrhosis. Annual Review of Pathology: Mechanisms of Disease, 2013. 8(1): p. 303-330.
6. Shimoda, S., et al., CX3CL1 (FRACTALKINE): A SIGNPOST FOR BILIARY INFLAMMATION IN PRIMARY BILIARY CIRRHOSIS. Hepatology (Baltimore, Md.), 2010. 51(2): p. 567-575.
7. Mao, T.K., et al., Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis. Hepatology, 2005. 42(4): p. 802-808.
8. Chuang, Y.-H., et al., Natural killer T cells exacerbate liver injury in a transforming growth factor β receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology, 2008. 47(2): p. 571-580.
9. Van de Water, J., et al., Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med, 1995. 181(2): p. 723-33.
10. Lan, R.Y., et al., Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology, 2006. 43(4): p. 729-737.
11. Robe, A.J., et al., A key role for autoreactive B cells in the breakdown of T-cell tolerance to pyruvate dehydrogenase complex in the mouse. Hepatology, 2005. 41(5): p. 1106-1112.
12. Lazaridis, K.N. and J.A. Talwalkar, Clinical Epidemiology of Primary Biliary Cirrhosis: Incidence, Prevalence, and Impact of Therapy. Journal of Clinical Gastroenterology, 2007. 41(5): p. 494-500 10.1097/01.mcg.0000225653.07932.8f.
13. Selmi, C., et al., Primary biliary cirrhosis in monozygotic and dizygotic twins: Genetics, epigenetics, and environment. Gastroenterology, 2004. 127(2): p. 485-492.
14. Selmi, C., et al., Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology, 2003. 38(5): p. 1250-1257.
15. Long, S.A., et al., Immunoreactivity of Organic Mimeotopes of the E2 Component of Pyruvate Dehydrogenase: Connecting Xenobiotics with Primary Biliary Cirrhosis. The Journal of Immunology, 2001. 167(5): p. 2956-2963.
16. Alvaro, D., et al., Estrogens and the pathophysiology of the biliary tree. World Journal of Gastroenterology : WJG, 2006. 12(22): p. 3537-3545.
17. Invernizzi, P., et al., Frequency of monosomy X in women with primary biliary cirrhosis. The Lancet, 2004. 363(9408): p. 533-535.
18. Lindor, K., Ursodeoxycholic Acid for the Treatment of Primary Biliary Cirrhosis. New England Journal of Medicine, 2007. 357(15): p. 1524-1529.
19. Carbone, M., et al., Sex and Age Are Determinants of the Clinical Phenotype of Primary Biliary Cirrhosis and Response to Ursodeoxycholic Acid. Gastroenterology, 2013. 144(3): p. 560-569.e7.
20. Corpechot, C., et al., Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology, 2008. 48(3): p. 871-877.
21. US National Library of Medicine. ClinicalTrials.gov [online], (2014).
22. US National Library of Medicine. ClinicalTrials.gov [online], (2012).
23. Hirschfield, G.M., et al., Efficacy of Obeticholic Acid in Patients With Primary Biliary Cirrhosis and Inadequate Response to Ursodeoxycholic Acid. Gastroenterology, 2015. 148(4): p. 751-761.e8.
24. Wakabayashi, K., et al., IL-2 receptor α−/− mice and the development of primary biliary cirrhosis. Hepatology, 2006. 44(5): p. 1240-1249.
25. Oertelt, S., et al., Anti-Mitochondrial Antibodies and Primary Biliary Cirrhosis in TGF-β Receptor II Dominant-Negative Mice. The Journal of Immunology, 2006. 177(3): p. 1655-1660.
26. Irie, J., et al., NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. The Journal of Experimental Medicine, 2006. 203(5): p. 1209-1219.
27. Wakabayashi, K., et al., Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology, 2008. 48(2): p. 531-540.
28. Wu, S.-J., et al., Innate immunity and primary biliary cirrhosis: Activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology, 2011. 53(3): p. 915-925.
29. Dumoutier, L., J. Louahed, and J.-C. Renauld, Cloning and Characterization of IL-10-Related T Cell-Derived Inducible Factor (IL-TIF), a Novel Cytokine Structurally Related to IL-10 and Inducible by IL-9. The Journal of Immunology, 2000. 164(4): p. 1814-1819.
30. Xie, M.-H., et al., Interleukin (IL)-22, a Novel Human Cytokine That Signals through the Interferon Receptor-related Proteins CRF2–4 and IL-22R. Journal of Biological Chemistry, 2000. 275(40): p. 31335-31339.
31. Nagem, R.A.P., et al., Crystal Structure of Recombinant Human Interleukin-22. Structure, 2002. 10(8): p. 1051-1062.
32. de Oliveira Neto, M., et al., Interleukin-22 Forms Dimers that are Recognized by Two Interleukin-22R1 Receptor Chains. Biophysical Journal, 2008. 94(5): p. 1754-1765.
33. Kotenko, S.V., et al., Identification of the Functional Interleukin-22 (IL-22) Receptor Complex: THE IL-10R2 CHAIN (IL-10Rβ) IS A COMMON CHAIN OF BOTH THE IL-10 AND IL-22 (IL-10-RELATED T CELL-DERIVED INDUCIBLE FACTOR, IL-TIF) RECEPTOR COMPLEXES. Journal of Biological Chemistry, 2001. 276(4): p. 2725-2732.
34. Jones, B.C., N.J. Logsdon, and M.R. Walter, Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain. Structure, 2008. 16(9): p. 1333-1344.
35. Logsdon, N.J., et al., The IL-10R2 Binding Hot Spot on IL-22 is Located on the N-terminal Helix and is Dependent on N-linked Glycosylation. Journal of Molecular Biology, 2004. 342(2): p. 503-514.
36. Yuan, Z.-l., et al., Stat3 Dimerization Regulated by Reversible Acetylation of a Single Lysine Residue. Science, 2005. 307(5707): p. 269-273.
37. Lejeune, D., et al., Interleukin-22 (IL-22) Activates the JAK/STAT, ERK, JNK, and p38 MAP Kinase Pathways in a Rat Hepatoma Cell Line: PATHWAYS THAT ARE SHARED WITH AND DISTINCT FROM IL-10. Journal of Biological Chemistry, 2002. 277(37): p. 33676-33682.
38. Mitra, A., S.K. Raychaudhuri, and S.P. Raychaudhuri, IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine, 2012. 60(1): p. 38-42.
39. Sabat, R., W. Ouyang, and K. Wolk, Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov, 2014. 13(1): p. 21-38.
40. Wolk, K., et al., IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-γ are not. Journal of Molecular Medicine, 2009. 87(5): p. 523-536.
41. Dumoutier, L., et al., Human interleukin-10-related T cell-derived inducible factor: Molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proceedings of the National Academy of Sciences, 2000. 97(18): p. 10144-10149.
42. Shioya, M., et al., Interleukin 22 Receptor 1 Expression in Pancreas Islets. Pancreas, 2008. 36(2): p. 197-199 10.1097/MPA.0b013e3181594258.
43. Andoh, A., et al., Interleukin-22, a Member of the IL-10 Subfamily, Induces Inflammatory Responses in Colonic Subepithelial Myofibroblasts. Gastroenterology, 2005. 129(3): p. 969-984.
44. Feng, D., et al., Interleukin-22 Promotes Proliferation of Liver Stem/Progenitor Cells in Mice and Patients With Chronic Hepatitis B Virus Infection. Gastroenterology, 2012. 143(1): p. 188-198.e7.
45. Zheng, Y., et al., Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med, 2008. 14(3): p. 282-289.
46. Wolk, K., et al., IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. European Journal of Immunology, 2006. 36(5): p. 1309-1323.
47. Aujla, S.J., et al., IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med, 2008. 14(3): p. 275-281.
48. Boniface, K., et al., IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes. The Journal of Immunology, 2005. 174(6): p. 3695-3702.
49. Wolk, K., et al., The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: A novel immunological cascade with potential relevance in psoriasis. European Journal of Immunology, 2009. 39(12): p. 3570-3581.
50. Wolk, K., et al., IL-22 Induces Lipopolysaccharide-Binding Protein in Hepatocytes: A Potential Systemic Role of IL-22 in Crohn’s Disease. The Journal of Immunology, 2007. 178(9): p. 5973-5981.
51. Sugimoto, K., et al., IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. The Journal of Clinical Investigation, 2008. 118(2): p. 534-544.
52. Pickert, G., et al., STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. The Journal of Experimental Medicine, 2009. 206(7): p. 1465-1472.
53. Zenewicz, L.A., et al., IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and Colitogenic. The Journal of Immunology, 2013. 190(10): p. 5306-5312.
54. Besnard, A.-G., et al., Dual Role of IL-22 in Allergic Airway Inflammation and its Cross-talk with IL-17A. American Journal of Respiratory and Critical Care Medicine, 2011. 183(9): p. 1153-1163.
55. Radaeva, S., et al., Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology, 2004. 39(5): p. 1332-1342.
56. Kong, X., et al., Interleukin-22 Induces Hepatic Stellate Cell Senescence and Restricts Liver Fibrosis. Hepatology (Baltimore, Md.), 2012. 56(3): p. 1150-1159.
57. Ki, S.H., et al., Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3. Hepatology, 2010. 52(4): p. 1291-1300.
58. 薛郁馨。<探討Interleukin-10及Interleukin-22於原發性膽道硬化症的免疫調節作用>。國立台灣大學醫學院醫學檢驗暨生物技術學系碩士論文,2014年。
59. Atchison, R.W., B.C. Casto, and W.M. Hammon, Adenovirus-Associated Defective Virus Particles. Science, 1965. 149(3685): p. 754-755.
60. Daya, S. and K.I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors. Clinical Microbiology Reviews, 2008. 21(4): p. 583-593.
61. Srivastava, A., E.W. Lusby, and K.I. Berns, Nucleotide sequence and organization of the adeno-associated virus 2 genome. Journal of Virology, 1983. 45(2): p. 555-564.
62. Im, D.S. and N. Muzyczka, Partial purification of adeno-associated virus Rep78, Rep52, and Rep40 and their biochemical characterization. Journal of Virology, 1992. 66(2): p. 1119-1128.
63. King, J.A., et al., DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. The EMBO Journal, 2001. 20(12): p. 3282-3291.
64. Smith, R.H. and R.M. Kotin, The Rep52 Gene Product of Adeno-Associated Virus Is a DNA Helicase with 3′-to-5′ Polarity. Journal of Virology, 1998. 72(6): p. 4874-4881.
65. Grieger, J.C., S. Snowdy, and R.J. Samulski, Separate Basic Region Motifs within the Adeno-Associated Virus Capsid Proteins Are Essential for Infectivity and Assembly. Journal of Virology, 2006. 80(11): p. 5199-5210.
66. Summerford, C. and R.J. Samulski, Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions. Journal of Virology, 1998. 72(2): p. 1438-1445.
67. Summerford, C., J.S. Bartlett, and R.J. Samulski, [alpha]V[beta]5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med, 1999. 5(1): p. 78-82.
68. Kashiwakura, Y., et al., Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection. Journal of Virology, 2005. 79(1): p. 609-614.
69. Akache, B., et al., The 37/67-Kilodalton Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9. Journal of Virology, 2006. 80(19): p. 9831-9836.
70. Duan, D., et al., Dynamin Is Required for Recombinant Adeno-Associated Virus Type 2 Infection. Journal of Virology, 1999. 73(12): p. 10371-10376.
71. Bartlett, J.S., R. Wilcher, and R.J. Samulski, Infectious Entry Pathway of Adeno-Associated Virus and Adeno-Associated Virus Vectors. Journal of Virology, 2000. 74(6): p. 2777-2785.
72. Girod, A., et al., The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. Journal of General Virology, 2002. 83(5): p. 973-978.
73. Kotin, R.M., et al., Site-specific integration by adeno-associated virus. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(6): p. 2211-2215.
74. Afione, S.A., et al., In vivo model of adeno-associated virus vector persistence and rescue. Journal of Virology, 1996. 70(5): p. 3235-3241.
75. J. Logan, G. and I. E. Alexander, Adeno-Associated Virus Vectors: Immunobiology and Potential Use for Immune Modulation. Current Gene Therapy, 2012. 12(4): p. 333-343.
76. Xiao, X., J. Li, and R.J. Samulski, Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Journal of Virology, 1996. 70(11): p. 8098-8108.
77. Ferrari, F.K., et al., Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. Journal of Virology, 1996. 70(5): p. 3227-3234.
78. Cideciyan, A.V., et al., Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proceedings of the National Academy of Sciences, 2008. 105(39): p. 15112-15117.
79. Christine, C.W., et al., Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology, 2009. 73(20): p. 1662-1669.
80. Nathwani, A.C., et al., Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B. New England Journal of Medicine, 2011. 365(25): p. 2357-2365.
81. Bryant, L.M., et al., Lessons Learned from the Clinical Development and Market Authorization of Glybera. Human Gene Therapy. Clinical Development, 2013. 24(2): p. 55-64.
82. McClure, C., et al., Production and titering of recombinant adeno-associated viral vectors. J Vis Exp, 2011(57): p. e3348.
83. Martinez, O.M., et al., Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatology, 1995. 21(1): p. 113-119.
84. Goddard, C.J.R., et al., Localisation and semiquantitative assessment of hepatic procollagen mRNA in primary biliary cirrhosis. Gut, 1998. 43(3): p. 433-440.
85. Chuang, Y.-H., et al., Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. Journal of Autoimmunity, 2005. 25(2): p. 126-132.
86. Heydtmann, M., et al., CXC Chemokine Ligand 16 Promotes Integrin-Mediated Adhesion of Liver-Infiltrating Lymphocytes to Cholangiocytes and Hepatocytes within the Inflamed Human Liver. The Journal of Immunology, 2005. 174(2): p. 1055-1062.
87. Borchers, A., et al., Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Seminars in Immunopathology, 2009. 31(3): p. 309-322.
88. Chang, H., et al., Hydrodynamic-Based Delivery of an Interleukin-22-Ig Fusion Gene Ameliorates Experimental Autoimmune Myocarditis in Rats. The Journal of Immunology, 2006. 177(6): p. 3635-3643.
89. Taube C, T.C., Gyülveszi G, Dehzad N, Kreymborg K, Schneeweiss K, et al., IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease. PLoS ONE 6(7): e21799. doi:10.1371/journal.pone.0021799, 2011.
90. Xing WW, Z.M., Liu S, Xu T, Gao J, Wang JX, et al. , Hepatoprotective effects of IL-22 on fulminant hepatic failure induced by d-galactosamine and lipopolysaccharide in mice. Cytokine, 2011a. 56: p. 174–179.
91. Scheiermann, P., et al., Application of Interleukin-22 Mediates Protection in Experimental Acetaminophen-Induced Acute Liver Injury. The American Journal of Pathology, 2013. 182(4): p. 1107-1113.
92. Chestovich, P.J., et al., IL-22: Implications for Liver Ischemia/Reperfusion Injury. Transplantation, 2012. 93(5): p. 485-492.
93. Feng, D., et al., Interleukin-22 Ameliorates Cerulein-Induced Pancreatitis in Mice by Inhibiting the Autophagic Pathway. International Journal of Biological Sciences, 2012. 8(2): p. 249-257.
94. Wolk, K., et al., IL-22 Increases the Innate Immunity of Tissues. Immunity, 2004. 21(2): p. 241-254.
95. Zhao, J., et al., Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology, 2014. 59(4): p. 1331-1342.
96. Geboes, L., et al., Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheumatism, 2009. 60(2): p. 390-395.
97. Ikeuchi, H., et al., Expression of interleukin-22 in rheumatoid arthritis: Potential role as a proinflammatory cytokine. Arthritis Rheumatism, 2005. 52(4): p. 1037-1046.
98. Jones, D.E.J., et al., 20 Adoptive transfer of self-PDC reactive T-cells into naïve mice induces portal tract and bile duct changes characteristic of primary biliary cirrhosis (PBC). Journal of Hepatology. 44: p. S10.
99. Harada, K., et al., In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis: Predominance of the Th1 subset. Hepatology, 1997. 25(4): p. 791-796.
100. Kawata, K., et al., Identification of Potential Cytokine Pathways for Therapeutic Intervention in Murine Primary Biliary Cirrhosis. PLoS ONE, 2013. 8(9): p. e74225.
101. Goddard, S., et al., DIFFERENTIAL EXPRESSION OF CHEMOKINES AND CHEMOKINE RECEPTORS SHAPES THE INFLAMMATORY RESPONSE IN REJECTING HUMAN LIVER TRANSPLANTS1. Transplantation, 2001. 72(12): p. 1957-1967.
102. Zeremski, M., et al., Intrahepatic Levels of CXCR3-Associated Chemokines Correlate with Liver Inflammation and Fibrosis in Chronic Hepatitis C. Hepatology (Baltimore, Md.), 2008. 48(5): p. 1440-1450.
103. Harvey, C.E., et al., Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. Journal of Leukocyte Biology, 2003. 74(3): p. 360-369.
104. Oo, Y.H. and D.H. Adams, The role of chemokines in the recruitment of lymphocytes to the liver. Journal of Autoimmunity, 2010. 34(1): p. 45-54.
105. Pennino, D., et al., IL-22 suppresses IFN-γ–mediated lung inflammation in asthmatic patients. Journal of Allergy and Clinical Immunology, 2013. 131(2): p. 562-570.
106. Kong, X., et al., Hepatoprotective and anti-fibrotic functions of interleukin-22: Therapeutic potential for the treatment of alcoholic liver disease. Journal of gastroenterology and hepatology, 2013. 28(0 1): p. 56-60.
107. Pellicoro, A., et al., Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol, 2014. 14(3): p. 181-194.
108. Tacke, F., et al., Serum chemokine receptor CXCR3 ligands are associated with progression, organ dysfunction and complications of chronic liver diseases. Liver International, 2011. 31(6): p. 840-849.
109. Hintermann, E., et al., CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. Journal of Autoimmunity, 2010. 35(4): p. 424-435.
110. Wu, S.-J., et al., Innate immunity and PBC: Activated invariant NKT cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology (Baltimore, Md.), 2011. 53(3): p. 915-925.
111. Stroes, E.S., et al., Intramuscular Administration of AAV1-Lipoprotein LipaseS447X Lowers Triglycerides in Lipoprotein Lipase–Deficient Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008. 28(12): p. 2303-2304.
112. Hauswirth, W.W., et al., Treatment of Leber Congenital Amaurosis Due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial. Human Gene Therapy, 2008. 19(10): p. 979-990.
113. MacLaren, R.E., et al., Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet, 2014. 383(9923): p. 1129-1137.
114. Manno, C.S., et al., Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med, 2006. 12(3): p. 342-347.
115. Mingozzi, F., et al., AAV-1–mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood, 2009. 114(10): p. 2077-2086.
116. Dalkara, D., et al., Inner Limiting Membrane Barriers to AAV-mediated Retinal Transduction From the Vitreous. Molecular Therapy, 2009. 17(12): p. 2096-2102.
117. Zhong, L., et al., Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology, 2008. 381(2): p. 194-202.
118. Martino, A.T., et al., Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8(+) T cells. Blood, 2013. 121(12): p. 2224-2233.
119. Perabo, L., et al., Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. The Journal of Gene Medicine, 2006. 8(2): p. 155-162.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53592-
dc.description.abstract原發性膽道硬化症 (Primary biliary cirrhosis,PBC) 是一種慢性肝臟自體免疫疾病,它是由於免疫系統攻擊肝內小膽管造成非化膿性發炎、損壞及膽汁鬱積的情況,最終導致肝纖維化及肝硬化發生,臨床上有三分之一病人對於唯一核准之臨床用藥-ursodeoxycholic acid (UDCA) 不具感受性,顯示目前對於發展新型藥物之迫切與需要。IL-22屬於IL-10 cytokine family,它是一個對抗外來病原菌感染、促進組織修復及維持組織完整之細胞激素,在免疫反應調控上也扮演重要角色。在許多發炎反應中,IL-22具有抑制發炎及修復之效果,而在多種肝臟發炎及自體免疫疾病模式中,IL-22更被指出具有保護作用。先前研究指出AAV (Adeno-associated virus) 本身不具致病性,且AAV vector能有效感染不同細胞並且長期表現所攜帶之目標基因,目前在動物模式及臨床試驗中以AAV vector作為基因治療載體皆顯示不錯之成效。本實驗室先前研究將小鼠誘發PBC前以尾靜脈注射方式給予3 x 107 TU AAV-mIL-22,發現可有效減緩門脈浸潤及纖維化現象,顯示IL-22在PBC疾病中具有保護性之免疫調節作用。本研究探討以AAV攜帶IL-22基因在PBC疾病中之治療效果。我們使用2-OA-OVA搭配α-GalCer致敏小鼠產生PBC症狀,並於致敏後第三周將9 x 107 TU AAV-mIL-22以尾靜脈注射方式給予PBC小鼠,並於第十周犧牲觀察發炎及纖維化相關之肝臟病理、mRNA、及單核球變化。實驗結果顯示給予9 x 107 TU AAV-mIL-22可降低浸潤到肝臟單核球數目,並減少發炎相關細胞激素 (IFN-γ及TNF-α)、chemokines (CXCL10及CXCL16)、及纖維化相關基因 (collagen I及collagen III) 之mRNA表現,以減緩門脈區發炎及纖維化現象。因此AAV-mIL-22可有效減緩PBC疾病以達治療之效果,未來期許可作為治療PBC疾病之臨床用藥。zh_TW
dc.description.abstractPrimary biliary cirrhosis (PBC) is an autoimmune disease, characterized by immune-mediated destruction of small-size intrahepatic bile ducts, leading to non-suppurative cholangitis, liver fibrosis and cirrhosis. There are one-third of PBC patients showing inadequate biochemical response to single-licensed therapy- ursodeoxycholic acid (UDCA). Awareness of unmet need has demonstrated the urgency and demand of development of new therapeutic treatment to PBC disease. IL-22, a member of the IL-10 cytokine family, is associated with antimicrobial defense, tissue repair and integrity as well as immune regulation. IL-22 is important with anti-inflammatory response and tissue repair in many inflammatory diseases. IL-22 serves as a protective role in a variety of liver injury and autoimmune diseases. Adeno-associated virus (AAV) vectors can efficiently infect a variety of cells and maintain long-term gene expression and has not been associated with pathology. AAV-mediated gene therapy has shown success in many animal disease models and clinical trials. Our previous study showed that mice injected with 3 x 107 TU of AAV-mIL-22 before initiation of PBC had decreased infiltration of immune cells and fibrosis in liver portal triads of 2-OA-OVA/α-GalCer immunized mice, suggesting that IL-22 played a protective role in PBC disease. In this study, we investigated the therapeutic effects of AAV-mIL-22 in PBC disease. 9 x 107 TU AAV-mIL-22 were injected to 2-OA-OVA/α-GalCer immunized mice at week 3 post immunization and PBC features including liver pathology, inflammatory cytokines and fibrosis-related proteins, liver mononuclear cells infiltration were examined at week 10. Our results demonstrated that administration of 9 x 107 TU AAV-mIL-22 efficiently reduced liver mononuclear cells infiltration and mRNA expressions of inflammatory-related cytokines (IFN-γ and TNF-α), chemokines (CXCL10 and CXCL16) and fibrosis-related proteins (collagen I and collagen III). In conclusion, AAV-mIL-22 treatment could efficiently reduce PBC disease and could be a promising treatment to PBC in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:06Z (GMT). No. of bitstreams: 1
ntu-104-R02424011-1.pdf: 4762922 bytes, checksum: 9c6ef8437dc52b8bc65361c8f474adc8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 l
摘要 ll
Abstract lll
縮寫對照表 V
目錄 Vl
圖目錄 lX
第一章 研究背景 1
1.1 肝臟及免疫系統 1
1.1.1 原發性膽道硬化症 (Primary biliary cirrhosis,PBC) 1
1.1.2 PBC之免疫反應 2
1.1.2.1 膽道上皮細胞 2
1.1.2.2 先天性免疫細胞 2
1.1.2.3 後天性免疫細胞 3
1.1.3 PBC之致病因子 3
1.1.4 PBC之治療藥物 4
1.1.5 Xenobiotic–induced PBC之小鼠模式 4
1.2 IL-22及IL-22 receptor complex 5
1.2.1 IL-22之訊息傳遞 5
1.2.2 IL-22之分泌細胞與作用細胞 6
1.2.3 IL‑22–IL‑22R1 system之生理功能 6
1.2.4 IL‑22–IL‑22R1 system與發炎反應之關係 7
1.2.5 IL‑22–IL‑22R1 system在肝臟之功能 7
1.2.6 IL‑22–IL‑22R1 system與原發性膽道硬化症 8
1.3 腺相關病毒Adeno-associated virus (AAV) 及其基因 8
1.3.1 AAV生活史及其感染 9
1.3.2 AAV作為基因表現載體 9
1.3.3 AAV基因表現載體之臨床試驗 10
1.4 研究目的 11
第二章 實驗材料與方法 12
2.1 AAV組裝 12
2.2 AAV純化 12
2.3 AAV濃縮及定量 13
2.4 實驗用小鼠 13
2.5 Xenobiotics (2-OA-OVA) 誘發PBC小鼠模式及AAV注射 14
2.6 血清樣本收集 14
2.7 小鼠肝臟之灌流與病理切片之製作 14
2.8 小鼠肝臟單核細胞的純化 15
2.9 流式細胞儀 (flow cytometry) 分析細胞表面抗原 15
2.10 利用ELISA測定血清中的細胞激素 16
2.11 以ELISA測定PBC小鼠血清中的anti-mPDC-E2 IgM及IgG 16
2.12 組織及細胞RNA之萃取 17
2.13 RNA反轉錄成cDNA 17
2.14 以即時定量反轉錄聚合酶連鎖反應偵測特定基因之mRNA表現 17
2.15 Portal inflammation分析及計算 18
2.16 繪圖與統計分析 18
第三章 實驗結果 19
3.1 以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠血清內IL-22的濃度
19
3.2 第三周以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠其血清內anti -
mitochondrial Ab (anti-PDC-E2 IgM及IgG) 的表現 19
3.3 第三周以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠其肝臟發炎細
胞浸潤的情況及發炎細胞激素基因的表現 20
3.4 第三周以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠其肝臟纖維化
的情況及纖維化相關基因的表現 20
3.5 第三周以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠其肝臟內單核
球總數、淋巴球總數及其subsets 21
3.6 第三周以尾靜脈注射高濃度AAV-mIL-22之PBC鼠其肝臟內
chemokines的表現 21
3.7 第五周以尾靜脈注射高濃度AAV-mIL-22之PBC鼠其血清內anti -
mitochondrial Ab (anti-PDC-E2 IgM及IgG) 的表現 22
3.8 第五周以尾靜脈注射高濃度AAV-mIL-22之PBC鼠其肝臟發炎細胞
浸潤的情況及發炎細胞激素基因的表現 22
3.9 第五周以尾靜脈注射高濃度AAV-mIL-22之PBC鼠其肝臟肝臟纖維
化的情況及纖維化相關基因的表現 22
4.0 第五周以尾靜脈注射高濃度AAV-mIL-22之PBC鼠其肝臟內單核球
總數、淋巴球總數及其subsets 23
第四章 討論 24
附圖 31
參考文獻 55
附錄 65
圖一、PBC小鼠模式及第三周AAV注射之實驗流程 32
圖二、PBC小鼠模式及第五周AAV注射之實驗流程 33
圖三、以尾靜脈注射不同濃度AAV-mIL-22之PBC鼠血清內表現IL-22之情形 34
圖四、以2-OA-OVA/α-GalCer之PBC鼠第二周血清內AMA表現 35
圖五、第三周以尾靜脈注射3 x 107 TU AAV-mIL-22之PBC鼠第十周血清AMA表現 36
圖六、第三周以尾靜脈注射3 x 107 TU AAV-mIL-22之PBC鼠肝臟發炎情形 37
圖七、第三周以尾靜脈注射3 x 107 TU AAV-mIL-22之PBC鼠肝臟纖維化情形 38
圖八、第三周以尾靜脈注射3 x 107 TU AAV-mIL-22之PBC鼠肝臟單核球細胞總數及其亞群 39
圖九、第三周以尾靜脈注射3 x 107 TU AAV-mIL-22之PBC鼠肝臟中T細胞之亞群 40
圖十、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠第十周血清AMA表現 41
圖十一、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟發炎情形 42
圖十二、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟纖維化情形
43
圖十三、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟單核球細胞總數及其亞群 44
圖十四、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟中T細胞及CD4 T細胞之亞群 45
圖十五、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟中T cells及其亞群之活化情形 46
圖十六、第三周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟中相關chemokines基因之表現情形 47
圖十七、以2-OA-OVA/α-GalCer之PBC鼠第四周血清內AMA表現 48
圖十八、第五周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠第十周血清AMA表現 49
圖十九、第五周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟發炎情形 50
圖二十、第五周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟纖維化情形
51
圖二十一、第五周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟單核球細胞總數及其亞群 52
圖二十二、第五周以尾靜脈注射9 x 107 TU AAV-mIL-22之PBC鼠肝臟中T細胞之亞群 53
圖二十三、AAV-mIL-22減緩PBC疾病之可能免疫機轉模式 54
dc.language.isozh-TW
dc.subject肝硬化zh_TW
dc.subject原發性膽道硬化症zh_TW
dc.subject細胞介質素22zh_TW
dc.subject腺相關病毒zh_TW
dc.subject肝纖維化zh_TW
dc.subjectPrimary biliary cirrhosisen
dc.subjectliver cirrhosisen
dc.subjectliver fibrosisen
dc.subjectAdeno-associated virusen
dc.subjectIL-22en
dc.title腺相關病毒攜帶Interleukin-22基因在原發性膽道硬化症之治療效果zh_TW
dc.titleTherapeutic Effects of IL-22 Expressing Adeno-Associated Virus on Primary Biliary Cirrhosisen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉旻禕,莊雅婷,陳雅雯
dc.subject.keyword原發性膽道硬化症,細胞介質素22,腺相關病毒,肝纖維化,肝硬化,zh_TW
dc.subject.keywordPrimary biliary cirrhosis,IL-22,Adeno-associated virus,liver fibrosis,liver cirrhosis,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2015-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved