請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53590完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Jian-Syun Du | en |
| dc.contributor.author | 杜建勳 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:26:05Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2015-08-07 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | 林于倫。(2008)。電照週期對文心蘭'Gower Ramsey'花序發育及品質之影響。國立中興大學園藝學系所學位論文。台中。
徐懷恩。(1997)。不同光照、氮源肥料及花梗修剪對文心蘭開花之影響。國立中興大學園藝學系所學位論文。台中。 張允瓊、李哖。(1998)。光度對文心蘭 (Oncidium'Gower Ramsey') 假球莖生長及開花品質之影響。宜蘭技術學報。1: 39-51。 張允瓊。(1996)。溫度、光度及肥料濃度對文心蘭生長與開花之影響。國立臺灣大學園藝學系所學位論文。台北。 張朝晏。(2009)。文心蘭之健康管理。2009 花卉健康管理研討會專刊。195-202。 曹雪、王晨、房經貴、楊光、于華平、宋長年。(2011)。葡萄 SPL9 和 SPL10 基因全長cDNA克隆、亞細胞定位和表達分析。園藝學報。38: 240-250。 許玉妹。(2001)。花梗及新芽抽出期與文心蘭開花期及切花品質之關係。高雄區農業專訊。38: 10-13。 許榮華。(2010)。假球莖於著生蘭生育上所扮演的角色。臺中區農業改良場特刊。105: 154-162。 許榮華、吳省寬、游婷媛、林于倫、徐懷恩、李泰昌、王美琪、郭雅芩、林瑞松。(2011)。外銷文心蘭切花生產品質之關鍵。2010 花卉研究團隊研究現況與展望研討會專刊。17-33。 黃怡菁。(1997)。文心蘭基本生長週期與花期修剪產期調節。高雄區農業專訊。22: 3-5。 臧友真。(2013)。文心蘭miR156-SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) 調控模組於高溫誘導開花機制之功能性探討。臺灣大學植物科學研究所學位論文。台北。 蔡東明、莊耿彰、謝廷芳。(2012)。文心蘭新品種之選育。2011年花卉研究團隊成果發表會專刊。51-60。 謝東霖。(2011)。文心蘭中兩個 SVP 同源基因 OnSVP1/2 參與調控花器老化及凋落與開花時間之功能性分析。中興大學生物科技學研究所學位論文。台中。 謝家綺。(2014)。穀胱甘肽的氧化與還原狀態在維他命C-穀胱甘肽循環鏈中與文心蘭開花機制之關聯性。臺灣大學植物科學研究所學位論文。台北。 Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056. Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal 61: 1001-1013. Angel, A., Song, J., Dean, C., and Howard, M. (2011). A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476: 105-108. Attolico, A., and De Tullio, M. (2006). Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiology and Biochemistry 44: 462-466. Axtell, M.J., and Bowman, J.L. (2008). Evolution of plant microRNAs and their targets. Trends in Plant Science 13: 343-349. Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics 2: e106. Benlloch, R., Kim, M.C., Sayou, C., Thévenon, E., Parcy, F., and Nilsson, O. (2011). Integrating long‐day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. The Plant Journal 67: 1094-1102. Birkenbihl, R.P., Jach, G., Saedler, H., and Huijser, P. (2005). Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. Journal of Molecular Biology 352: 585-596. Blázquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835-3844. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. Chang, Y.Y., Chiu, Y.F., Wu, J.W., and Yang, C.H. (2009). Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant and Cell Physiology 50: 1425-1438. Chang, Y.Y., Chu, Y.W., Chen, C.W., Leu, W.M., Hsu, H.F., and Yang, C.H. (2011). Characterization of Oncidium ‘Gower Ramsey’ transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant and Cell Physiology 52: 1532-1545. Chatterjee, J. (2004). Regulation of development and cell cycle through a retinoblastoma like protein, RBR1, in Arabidopsis. The Doctor dissertation of Natural Sciences, Swiss Federal Institute of Technology ETH Zurich. Chen, X., Zhang, Z., Liu, D., Zhang, K., Li, A., and Mao, L. (2010). SQUAMOSA promoter‐binding protein‐like transcription factors: Star players for plant growth and development. Journal of Integrative Plant Biology 52: 946-951. Chin, D.C., Shen, C.H., SenthilKumar, R., and Yeh, K.W. (2014). Prolonged exposure to elevated temperature induces floral transition via up-regulation of Cytosolic Ascorbate Peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium Hybrid Orchid. Plant and Cell Physiology 55: 2164-2176. Corbesier, L., and Coupland, G. (2006). The quest for florigen: a review of recent progress. Journal of Experimental Botany 57: 3395-3403. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., and Turnbull, C. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033. Eriksson, S., Böhlenius, H., Moritz, T., and Nilsson, O. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. The Plant Cell 18: 2172-2181. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155: 2-18. Galvão, V.C., Horrer, D., Küttner, F., and Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139: 4072-4082. Gan, E.S., Xu, Y., Wong, J.Y., Goh, J.G., Sun, B., Wee, W.Y., Huang, J., and Ito, T. (2014). Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nature Communications 5: 5098-5110. Garcia-Molina, A., Xing, S., and Huijser, P. (2014a). A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiology 164: 828-840. Garcia-Molina, A., Xing, S., and Huijser, P. (2014b). Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biology 14: 231-244. Gil, V., and Zaidan, L. (1996). Flowering of Oncidium flexuosum. Orchid Review 104: 186-188. Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., and Wang, J.W. (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23: 1512-1522. Gu, X., Le, C., Wang, Y., Li, Z., Jiang, D., Wang, Y., and He, Y. (2013). Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nature Communications 4: 1947-1956. Guo, A.Y., Zhu, Q.H., Gu, X., Ge, S., Yang, J., and Luo, J. (2008). Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418: 1-8. Guo, D., Li, C., Dong, R., Li, X., Xiao, X., and Huang, X. (2015). Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. Journal of Integrative Plant Biology 57: 522-533. He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754. Hew, C., and Yong, J. (1994). Growth and photosynthesis of Oncidium 'Goldiana'. Journal of Horticultural Science 69: 809-820. Hou, C.J., and Yang, C.H. (2009). Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant and Cell Physiology 50: 1544-1557. Hou, H., Yan, Q., Wang, X., and Xu, H. (2013). A SBP-box gene VpSBP5 from Chinese wild Vitis species responds to Erysiphe necator and defense signaling molecules. Plant Molecular Biology Reporter 31: 1261-1270. Hu, C.Y., Chee, P.P., Chesney, R.H., Zhou, J.H., Miller, P.D., and O'Brien, W.T. (1990). Intrinsic GUS-like activities in seed plants. Plant Cell Reports 9: 1-5. Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138: 4117-4129. Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Current Biology 17: 1050-1054. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science 7: 106-111. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 3901-3907. Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., and Zhu, X. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42: 541-544. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347. Johansson, M., and Staiger, D. (2014). Time to flower: interplay between photoperiod and the circadian clock. Journal of Experimental Botany 66: 719-730. Jorgensen, S.A., and Preston, J.C. (2014). Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis. Molecular Phylogenetics and Evolution 73: 129-139. Jung, J.H., Ju, Y., Seo, P.J., Lee, J.H., and Park, C.M. (2012). The SOC1‐SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal 69: 577-588. Jung, J.H., Seo, P.J., Kang, S.K., and Park, C.M. (2011). miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology 76: 35-45. Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. The Plant Cell 19: 2736-2748. Kaiser, R. (1993). Orchids of the American tropics. Roche Basel ED. The Scent of Orchid. Composed and printed by Morf and Co. AG, Basel. 115-116. Karasawa, K. (1989). Oncidium and Odontoglossums. Orchid Altas 7. Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., and Ahn, J.H. (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology 159: 461-478. Kinoshita, T., Ono, N., Hayashi, Y., Morimoto, S., Nakamura, S., Soda, M., Kato, Y., Ohnishi, M., Nakano, T., and Inoue, S.I. (2011). FLOWERING LOCUS T regulates stomatal opening. Current Biology 21: 1232-1238. Klein, J., Saedler, H., and Huijser, P. (1996). A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics 250: 7-16. Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., and Barth, C. (2009). Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiology 149: 803-815. Kumar, S.V., and Wigge, P.A. (2010). H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: 136-147. Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alós, E., Alvey, E., Harberd, N.P., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484: 242-245. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010). Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Research, gkp1240. Lee, J., Oh, M., Park, H., and Lee, I. (2008a). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. The Plant Journal 55: 832-843. Lee, J.H., Lee, J.S., and Ahn, J.H. (2008b). Ambient temperature signaling in plants: an emerging field in the regulation of flowering time. Journal of Plant Biology 51: 321-326. Lee, J.H., Ryu, H.S., Chung, K.S., Posé, D., Kim, S., Schmid, M., and Ahn, J.H. (2013). Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342: 628-632. Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21: 397-402. Li, C., and Dubcovsky, J. (2008). Wheat FT protein regulates VRN1 transcription through interactions with FDL2. The Plant Journal 55: 543-554. Liang, X., Nazarenus, T.J., and Stone, J.M. (2008). Identification of a consensus DNA-binding site for the Arabidopsis thaliana SBP domain transcription factor, AtSPL14, and binding kinetics by surface plasmon resonance. Biochemistry 47: 3645-3653. Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J.P., and Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences 103: 6398-6403. Lin, C.S., Chen, J.J., Huang, Y.T., Hsu, C.T., Lu, H.C., Chou, M.L., Chen, L.C., Ou, C.I., Liao, D.C., Yeh, Y.Y., Chang, S.B., Shen, S.C., Wu, F.H., Shih, M.C., and Chan, M. T. (2013). Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant Molecular Biology 82: 193-204. Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-Cázares, B., Gendler, K., Jorgensen, R.A., and Phinney, B. (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell 19: 1488-1506. Long, S.P., and Woodward, F.I. (1988). Plants and temperature. The Company of Biologists, Cambridge. 299-300. Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277. Martin, R.C., Asahina, M., Liu, P.P., Kristof, J.R., Coppersmith, J.L., Pluskota, W.E., Bassel, G.W., Goloviznina, N.A., Nguyen, T.T., and Martínez-Andújar, C. (2010). The regulation of post-germinative transition from the cotyledon-to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER BINDING PROTEIN LIKE13 in Arabidopsis. Seed Science Research 20: 89-96. Michiels, A., Van den Ende, W., Tucker, M., Van Riet, L., and Van Laere, A. (2003). Extraction of high-quality genomic DNA from latex-containing plants. Analytical Biochemistry 315: 85-89. Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., and Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics 42: 545-549. Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal 35: 613-623. Murase, K., Hirano, Y., Sun, T.P., and Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459-463. Mutasa-Göttgens, E., and Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60: 1979-1989. Ng, C.K.Y., and Hew, C.S. (2000). Orchid pseudobulbs– 'false' bulbs with a genuine importance in orchid growth and survival! Scientia Horticulturae 83: 165-172. Padmanabhan, M.S., Ma, S., Burch-Smith, T.M., Czymmek, K., Huijser, P., and Dinesh-Kumar, S.P. (2013). Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathogens 9: e1003235. Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395: 561-566. Poethig, R.S. (2003). Phase change and the regulation of developmental timing in plants. Science 301: 334-336. Porri, A., Torti, S., Romera-Branchat, M., and Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139: 2198-2209. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G., and Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503: 414-417. Preston, J.C., and Hileman, L.C. (2010). SQUAMOSA‐PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. The Plant Journal 62: 704-712. Preston, J.C., and Hileman, L.C. (2013). Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Frontiers in Plant Science 4: 1-13. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857. Ryu, J.Y., Lee, H.J., Seo, P.J., Jung, J.H., Ahn, J.H., and Park, C.M. (2014). The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Molecular Plant 7: 377-387. Ryu, J.Y., Park, C.M., and Seo, P.J. (2011). The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Molecules and Cells 32: 295-303. Sasaki, K., Yamaguchi, H., Narumi, T., Shikat, M., Oshima, Y., Nakata, M., Mitsuda, N., Ohme-Takagi, M., and Ohtsubo, N. (2011). Utilization of a floral organ-expressing AP1 promoter for generation of new floral traits in Torenia fournieri Lind. Plant Biotechnology 28: 181-188. Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D., and Lohmann, J.U. (2003). Dissection of floral induction pathways using global expression analysis. Development 130: 6001-6012. Schmitz, R.J., Sung, S., and Amasino, R.M. (2008). Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proceedings of the National Academy of Sciences 105: 411-416. Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8: 517-527. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology 67: 183-195. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development 20: 898-912. Shen, C.H., Krishnamurthy, R., and Yeh, K.W. (2009). Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant and Cell Physiology 50: 935-946. Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M. (2009). Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology 50: 2133-2145. Shim, J.S., and Imaizumi, T. (2015). Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry. 54: 157-170. Silva, E.M., Silva Azevedo, M., Guivin, M.A.C., Ramiro, D.A., Figueiredo, C.R., Carrer, H., Peres, L.E.P., and Nogueira, F.T.S. (2014). microRNA156‐targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. The Plant Journal 78: 604-618. Stone, J.M., Liang, X., Nekl, E.R., and Stiers, J.J. (2005). Arabidopsis AtSPL14, a plant‐specific SBP‐domain transcription factor, participates in plant development and sensitivity to fumonisin B1. The Plant Journal 41: 744-754. Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120. Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159-164. Takada, S., and Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. The Plant Cell 15: 2856-2865. Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316: 1033-1036. Taoka, K.I., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., and Tamaki, S. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476: 332-335. Tiwari, S.B., Shen, Y., Chang, H.C., Hou, Y., Harris, A., Ma, S.F., McPartland, M., Hymus, G.J., Adam, L., and Marion, C. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis‐element. New Phytologist 187: 57-66. Unte, U.S., Sorensen, A.M., Pesaresi, P., Gandikota, M., Leister, D., Saedler, H., and Huijser, P. (2003). SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. The Plant Cell 15: 1009-1019. Urbanus, S.L., de Folter, S., Shchennikova, A.V., Kaufmann, K., Immink, R.G., and Angenent, G.C. (2009). In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biology 9: 5-20. Usami, T., Horiguchi, G., Yano, S., and Tsukaya, H. (2009). The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136: 955-964. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006. Verhage, L., Angenent, G.C., and Immink, R.G. (2014). Research on floral timing by ambient temperature comes into blossom. Trends in Plant Science 19: 583-591. Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., Feil, R., Lunn, J.E., Stitt, M., and Schmid, M. (2013). Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339: 704-707. Wang, C.Y., Chiou, C.Y., Wang, H.L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.W. (2008). Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227: 1063-1077. Wang, H., and Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant 8: 677-688. Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138: 738-749. Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., and Qian, Q. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44: 950-954. Wang, Y., Wu, F., Bai, J., and He, Y. (2014). BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnology Journal 12: 312-321. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056-1059. Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology 100: 403-408. Winter, C.M., Austin, R.S., Blanvillain-Baufume, S., Reback, M.A., Monniaux, M., Wu, M.F., Sang, Y., Yamaguchi, A., Yamaguchi, N., and Parker, J.E. (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Developmental Cell 20: 430-443. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539-3547. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750-759. Xie, K., Wu, C., and Xiong, L. (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology 142: 280-293. Xu, Z., Sun, L., Zhou, Y., Yang, W., Cheng, T., Wang, J., and Zhang, Q. (2015). Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume. Molecular Genetics and Genomics Epub ahead of print 1-15. (DOI: 10.1007/s00438-015-1029-3) Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell 17: 268-278. Yamaguchi, N., Winter, C.M., Wu, M.F., Kanno, Y., Yamaguchi, A., Seo, M., and Wagner, D. (2014). Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344: 638-641. Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., and Shikanai, T. (2009). SQUAMOSA promoter binding protein–like7 is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell 21: 347-361. Yamasaki, K., Kigawa, T., Inoue, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y., and Terada, T. (2006). An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure. FEBS Letters 580: 2109-2116. Yan, Y., Shen, L., Chen, Y., Bao, S., Thong, Z., and Yu, H. (2014). A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Developmental Cell 30: 437-448. Yang, L., Xu, M., Koo, Y., He, J., and Poethig, R.S. (2013). Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife 2: e00260. Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., and Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell 22: 2156-2170. Yong, J., and Hew, C. (1995). The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. International Journal of Plant Sciences 22: 450-459. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572. Yu, N., Cai, W.J., Wang, S., Shan, C.M., Wang, L.J., and Chen, X.Y. (2010). Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. The Plant Cell 22: 2322-2335. Yu, S., Cao, L., Zhou, C.M., Zhang, T.Q., Lian, H., Sun, Y., Wu, J., Huang, J., Wang, G., and Wang, J.W. (2013). Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife 2: e00269. Yu, S., Galvão, V.C., Zhang, Y.C., Horrer, D., Zhang, T.Q., Hao, Y.H., Feng, Y.Q., Wang, S., Schmid, M., and Wang, J.W. (2012). Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. The Plant Cell 24: 3320-3332. Yu, Z.X., Wang, L.J., Zhao, B., Shan, C.M., Zhang, Y.H., Chen, D.F., and Chen, X.Y. (2015). Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant 8: 98-110. Zhang, B., Liu, X., Zhao, G., Mao, X., Li, A., and Jing, R. (2014a). Molecular characterization and expression analysis of Triticum aestivum squamosa‐promoter binding protein‐box genes involved in ear development. Journal of Integrative Plant Biology 56: 571-581. Zhang, J.Z., Mei, L., Liu, R., Khan, M.R.G., and Hu, C.G. (2014b). Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (CiLFY) during precocious trifoliate orange phase change process. PLoS One 9: e88558. Zhang, T.Q., Lian, H., Tang, H., Dolezal, K., Zhou, C.M., Yu, S., Chen, J.H., Chen, Q., Liu, H., and Ljung, K. (2015). An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. The Plant Cell 27: 349-360. Zhang, X., Dou, L., Pang, C., Song, M., Wei, H., Fan, S., Wang, C., and Yu, S. (2014c). Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Molecular Genetics and Genomics 290: 1-12. Zhang, Y. (2005). The SBP-box gene SPL8 affects reproductive development and gibberellin response in Arabidopsis. The Doctor dissertation of Mathematics and Natural Sciences, University of Cologne. Zhou, H., Lin‐Wang, K., Wang, H., Gu, C., Dare, A.P., Espley, R.V., He, H., Allan, A.C., and Han, Y. (2015). Molecular genetics of blood‐fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82: 105-121. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53590 | - |
| dc.description.abstract | 文心蘭開花機制至今仍不甚明瞭。前人研究發現三個文心蘭SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) 基因參與在營養期及生殖期間的轉換,也參與在高環境溫度 (即高室溫) 誘導開花之中。該基因可能扮演調控者之角色,其基因表現與下游開花基因FLOWERING LOCUS T (FT) 及APETALA1 (AP1) 具正相關性。為了探究文心蘭OgSPL與開花基因間之調控關係,我們進一步釣取文心蘭OgFT、OgLEAFY (OgLFY)、OgAP1以及OgSPLs等基因之啟動子進行研究。結果顯示文心蘭SPL蛋白於細胞核中表現,並可調控OgFT及OgAP1啟動子,但無法調控OgLFY啟動子。此外,文心蘭OgFT蛋白於細胞核以及細胞質中表現,並可與阿拉伯芥AtFD蛋白交互作用於細胞核中,其蛋白複合體可進一步調控三個OgSPL啟動子。進一步將釣取之相關基因啟動子並接上GUS報導基因,進而轉殖到阿拉伯芥中。從GUS組織染色結果中,OgSPLs與開花基因的啟動子具有部分相同之表現位置,顯示OgSPL與相關開花基因之間存在調控之可能性。而經由GUS活性測定分析,說明文心蘭OgAP1啟動子可以受高環境溫度所誘導。總結上述結果,OgSPLs在高環境溫度誘導文心蘭開花路徑中為重要之調控者,並影響開花基因之表現。 | zh_TW |
| dc.description.abstract | The mechanism of flowering and phase transition from vegetative to reproductive stage is still not well-known in Oncidesa. Our previous study has shown that three SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes in Oncidesa (OgSPLs) are identified as key regulators in the phase transition of reproductive process and high ambient temperature-induced flowering, which relate to induction of the down-stream floral genes, such as FLOWERING LOCUS T (FT), APETALA1 (AP1). To comprehend the regulatory mechanism between OgSPLs and the floral genes, we cloned OgFT, OgLEAFY (OgLFY), OgAP1, and OgSPLs promoter. Our results showed that OgSPLs localizes in nucleus and could regulate OgFT, OgAP1 promoter but not OgLFY promoter. Additionally, OgFT localizes in nucleus and cytoplasm which could interact with AtFD and further regulate OgSPLs promoter. Moreover, we generated Arabidopsis transgenic plants which has GUS reporter gene driven by the target genes’ promoter of Oncidesa. GUS staining data revealed the overlapped expression of OgSPLs and floral genes, indicating the possibility of regulation network between OgSPLs and floral regulation genes. GUS activity analysis showed that OgAP1 promoter could be induced by high ambient temperature. Our results suggested that OgSPLs are the master-regulator to coordinate the floral genes on high ambient temperature-induced flowering and phase transition in Oncidesa. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:26:05Z (GMT). No. of bitstreams: 1 ntu-104-R02b42008-1.pdf: 3845995 bytes, checksum: bc2174def4c48563a873a905ba1e5971 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
中文摘要 i Abstract ii 檢索表 iii 目錄 v 圖表目錄 vii 附錄圖表目錄 viii 第一章 前言 1 1.1 文心蘭概述 1 1.2 植物開花生理 4 1.3 SPL對於植物生理之影響 10 1.4 研究目的 15 第二章 材料與方法 17 2.1 實驗材料 17 2.2 文心蘭基因之啟動子釣取 17 2.3 阿拉伯芥葉肉原生質體之分離與轉形 19 2.4 阿拉伯芥原生質體細胞次定位分析 (subcellular localization) 20 2.5 阿拉伯芥原生質體雙分子螢光互補分析 (BiFC) 21 2.6 阿拉伯芥原生質體雙螢光素酶活性分析 (Dual-Luciferase Assay) 21 2.7 阿拉伯芥啟動子轉殖與分析 22 2.8 β-葡萄糖苷酸酶 (GUS) 之組織染色與活性測定 24 第三章 結果 27 3.1 文心蘭OgSPLs與開花基因之調控關係 27 3.1.1 文心蘭OgSPLs蛋白親緣性及次細胞定位分析 27 3.1.2 文心蘭開花基因啟動子序列分析 28 3.1.3 文心蘭OgSPLs蛋白對於其開花基因啟動子之影響 29 3.2 文心蘭OgFT與OgSPLs基因之調控關係 30 3.2.1 文心蘭OgFT蛋白次細胞定位分析 30 3.2.2 文心蘭OgFT與阿拉伯芥AtFD蛋白之交互作用 31 3.2.3 文心蘭OgSPLs啟動子序列分析 32 3.2.4 文心蘭OgFT蛋白對於OgSPLs啟動子之影響 33 3.2.5 文心蘭OgFT對於OgLFY啟動子之影響 34 3.3 阿拉伯芥啟動子轉殖株分析 34 3.3.1 阿拉伯芥啟動子轉殖株鑑定與分析 34 3.3.2 文心蘭各啟動子表現位置分析 35 3.3.3 長時間高環境溫度 (30℃) 對於OgAP1啟動子之影響 36 第四章 討論 37 4.1 文心蘭OgFT啟動子分析與調控機制 37 4.2 文心蘭OgLFY啟動子分析與調控機制 38 4.3 文心蘭OgAP1啟動子分析與調控機制 40 4.4 文心蘭OgSPLs蛋白之功能性研究 41 4.5 文心蘭OgSPLs蛋白與開花基因之調控關係 42 4.6 文心蘭OgSPLs啟動子之分析與生長發育扮演之角色 44 4.7 FT-FD 蛋白複合體調控文心蘭OgSPLs之研究 46 4.8 文心蘭高環境溫度誘導開花之調控機制 48 4.9 未來展望 48 參考文獻 50 圖表 69 附錄圖表 83 圖表目錄 圖一、文心蘭OgSPLs與其他物種SPL胺基酸序列之親源分析 69 圖二、OgSPLs次細胞定位分析 70 圖三、OgFT、OgLFY和OgAP1啟動子序列cis-element 預測圖 71 圖四、利用雙螢光素酶活性分析探討OgSPLs對於OgFT、OgLFY和OgAP1啟動子之影響 72 圖五、OgFT次細胞定位分析 73 圖六、OgFT與AtFD蛋白之交互作用關係 74 圖七、OgSPLs啟動子序列cis-element 預測圖 75 圖八、利用雙螢光素酶活性分析探討OgFT與AtFD對於OgSPLs啟動子之影響 76 圖九、利用雙螢光素酶活性分析探討OgFT與AtFD對於OgLFY啟動子之影響 77 圖十、阿拉伯芥啟動子轉殖株基因組DNA檢測 78 圖十一、阿拉伯芥OgSPLs啟動子轉殖株組織差異性表現 79 圖十二、阿拉伯芥OgFT、OgLFY和OgAP1啟動子轉殖株組織差異性表現 80 圖十三、阿拉伯芥OgAP1啟動子轉殖株高環境溫度處理之GUS 活性 81 圖十四、OgSPLs參與文心蘭高環境溫度誘導開花機制之假說模型 82 附錄圖表目錄 附錄表一、引子序列 83 附錄圖一、文心蘭Oncidesa Gower Ramsey品系親緣圖譜 85 附錄圖二、文心蘭Oncidesa Gower Ramsey生育週期 86 附錄圖三、文心蘭miRNA-SPL調控模組於各組織、各生育時期和高環境溫度處理之表現情形 87 附錄圖四、使用GenomeWalkerTM釣取啟動子序列之流程圖 88 附錄圖五、PCR8/GW/TOPO載體示意圖 89 附錄圖六、P2YGW7載體示意圖 90 附錄圖七、雙分子螢光互補 (BiFC) 載體示意圖 91 附錄圖八、pCAMBIA 1391Z載體示意圖 92 附錄圖九、OgAP1啟動子序列 93 附錄圖十、OgSPL9-1啟動子序列 94 附錄圖十一、OgSPL10-1啟動子序列 96 附錄圖十二、OgSPL10-2啟動子序列 98 附錄圖十三、阿拉伯芥OgLFY啟動子轉殖株於抽梗階段之植物細部表現情況 99 附錄圖十四、OgFT啟動子序列E box與OgLFY啟動子序列PYRIMIDINEBOX OSRAMY1 motif預測圖 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | FT基因 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | 高環境溫度 | zh_TW |
| dc.subject | 文心蘭 | zh_TW |
| dc.subject | SPLs基因 | zh_TW |
| dc.subject | SPLs | en |
| dc.subject | FT | en |
| dc.subject | flowering | en |
| dc.subject | high ambient temperature | en |
| dc.subject | Oncidesa | en |
| dc.title | 文心蘭SPLs (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) 參與高室溫誘導開花之調控機制 | zh_TW |
| dc.title | SPLs (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) are involved in the regulatory mechanism of high ambient temperature-induced flowering in Oncidesa. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳虹樺(Hong-Hwa Chen),詹明才(Ming-Tsair Chan),靳宗洛(Tsung-Luo Jinn) | |
| dc.subject.keyword | 開花,高環境溫度,文心蘭,SPLs基因,FT基因, | zh_TW |
| dc.subject.keyword | flowering,high ambient temperature,Oncidesa,SPLs,FT, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
