請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖 | |
| dc.contributor.author | Yi-Min Yu | en |
| dc.contributor.author | 游逸民 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:54Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2015-09-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | [1] S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital System Design, Hoboken, NJ: Wiley, 2009. [2] F. Jun, Y. Xiaoning, J. Kim, B. Archambeault, and A. Orlandi, “Signal integrity design for high-speed digital circuits: Progress and directions,” IEEE Trans. Electromagn. Compat., vol. 52, no. 2, pp. 392–400, May 2010. [3] T.-L. Wu, F. Buesink, and F. Canavero, “Overview of signal integrity and EMC design technologies on PCB: Fundamentals and latest progress,” IEEE Trans. Electromag. Compat., vol. 55, no. 4, pp. 624–638, Aug. 2013. [4] Y. Kayano, Y. Tsuda, and H. Inoue, “Identifying EM radiation from asymmetrical differential-paired lines with equi-distance routing,” in Proc. IEEE Int. Symp. Electromagn. Compat., Pittsburgh, PA, Aug. 2012, pp. 311–316. [5] L. O. Hoefi, J. L. Knighten, J. T. DiBene II, and M. W. Fogg, “Spectral analysis of common mode currents on fibre channel cable shields due to skew imbalance of differential signals operating at 1.0625 Gb/s,” in Proc. IEEE Int. Symp. Electromagn. Compat., Denver, CO, Aug. 1998, pp. 527–531. [6] J. L. Knighten, N. W. Smith, J. T. DiBene II, and L. O. Hoeft, “EMI common-mode current dependence on delay skew imbalance in high speed differential transmission lines operating at 1 gigabit/second data rates,” in Proc. IEEE Int. Symp. Quality Electron. Design, San Jose, CA, Mar. 2000, pp. 309–313. [7] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, and M. Wilhelm, “Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables,” IEEE Trans. Electromagn. Compat., vol. 38, no. 4, pp. 557–566, Nov. 1996. [8] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, C.-W. Lam, and L. Rubin, “Quantifying EMI resulting from finite-impedance reference planes,” IEEE Trans. Electromag. Compat., vol. 39, no. 4, pp. 286–297, Nov. 1997. [9] D. M. Hockanson, X. Ye, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, and R. E. DuBroff, “FDTD and experimental investigation of EMI from stacked-card PCB configurations,” IEEE Trans. Electromag. Compat., vol. 43, no. 1, pp. 1–10, Feb. 2001. [10] Y. Kayano, M. Tanaka and H. Inoue, “An equivalent circuit model for predicting EM radiation from a PCB driven by a connected feed cable,” in Proc. IEEE Int. Symp. Electromagn. Compat., Portland, OR, Aug. 2006, pp.166–171. [11] M. Leone, and V. Navratil, “On the electromagnetic radiation of printed-circuit-board interconnections,” IEEE Trans. Electromag. Compat., vol. 47, no. 2, pp. 219–226, May 2005. [12] P. Fornberg, M. Kanda, C. Lasek, M. Piket-May, and S. H. Stephen, “The impact of a nonideal return path on differential signal integrity,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 11–15, Feb. 2002. [13] B. Archambeault, S. Connor, and J. Diepenbrock, “EMI emissions from mismatch in high-speed differential signal trace and cables,” in Proc. IEEE Int. Electromagn. Compat. Symp., Honolulu, HI, Jul. 2007, pp. 1–6. [14] X. Duan, B. Archambeault, H.-D. Bruens, and C. Schuster, “EM emission of differential signals across connected printed circuit boards in the GHz range,” in Proc. IEEE Int. Electromagn. Compat. Symp., Austin, TX, Aug. 2009, pp. 50–55. [15] C. N. Chiu, C.-H. Kuo, and M.-S. Lin, “Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices,” IEEE Trans. Electromagn.Compat.,vol. 50, no. 4, pp. 895-904, Nov. 2008. [16] B. A. Munk, Frequency Selective Surfaces: Theory and Design, Hoboken, NJ: Wiley, 2002. [17] F. Bayatpur and K. Sarabandi “A tunable metamaterial frequency-selective surface with variable modes of operation,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 6, pp. 1433-1438, Jun. 2009. [18] T. K. Wu and S. W. Lee, “Multiband frequency selective surface with multiring patch elements,” IEEE Trans. Antennas Propag., vol. 42, no. 11, pp. 1484-1490, Nov. 1994. [19] F. Costa, S. Genovesi and A. Monorchio “A chipless RFID based on multiresonant high-impedance surfaces,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 146-153, Jan. 2013. [20] C.-N. Chiu, C.-H. Kuo, and M.-S. Lin, “Bandpass shielding enclosure design using multipole-slot arrays for modern portable digital devices,” IEEE Trans. Electromagn.Compat.,vol. 50, no. 4, pp. 895-904, Nov. 2008. [21] M. Li, S, Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas. Wireless Propag. Lett., vol. 11, pp. 748-751, 2012. [22] C.-N. Chiu, Y.-C. Chang, H.-C. Hsieh, and C. H. Chen, “Suppression of spurious emissions from a spiral inductor through the use of a frequency-selective surface,” IEEE Trans. Electromagn.Compat., vol. 52, no. 1, pp. 56-63, Feb. 2010. [23] B. Schoenlinner, A. Abbaspour-Tamijani, L. C. Kempel and G. M. Rebeiz “Switchable low-loss RF MEMS Ka-band frequency-selective surface,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2474-2481, Nov. 2004. [24] C. C. Chen, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag., vol. AP-18, no. 5, pp. 660-665, Sep. 1970. [25] B. A. Munk, R. G. Kouyoumjian, and L. Peters, “Reflection properties of periodic surfaces of loaded dipoles,” IEEE Trans. Antennas Propag., vol. AP-19, no. 5, pp. 612-617, Sep. 1971. [26] R. A. Hill and B. A. Munk, “The effect of perturbating a frequency selective surface and its relation to the design of a dual-band surface,” IEEE Trans. Antennas Propag., vol. 44, no. 3, pp. 368-374, Mar. 1996. [27] J. Huang, T. K. Wu, and S. W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag., vol. 42, no. 2, pp. 166-175, Feb. 1994. [28] T. K. Wu, “Four-band frequency selective surface with double-square loop patch elements,” IEEE Trans. Antennas Propag., vol. 42, no. 12, pp. 1659-1663, Dec. 1994. [29] B. A. Munk, Finite antenna array and FSS, NJ: Wiley, 2003. [30] D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw.Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999. [31] T. K. Wu and S. W. Lee, “Multiband frequency selective surface with multiring patch elements,” IEEE Trans. Antennas Propag., vol. 42, no. 11, pp. 1484-1490, Nov. 1994. [32] T. K. Wu, Frequency Selective Surfaces and Grid Array, New York: Wiley, 1995. [33] J. C. Vardaxoglou, Frequency Selective Surfaces Analysis and Design,New York: Wiley, 1997. [34] Y.-M. Yu, C.-N. Chiu, Y.-P. Chiou and T.-L. Wu, “A novel 2.5-dimensional ultraminiaturized-element frequency selective surface,” IEEE Tarns. Antennas Propagat. , vol. 62, pp. 3657–3663, July 2014.. [35] C. C. Chen, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Trans. Antennas Propag., vol. AP-18, no. 5, pp. 660-665, Sep. 1970. [36] F. Costa, S. Genovesi, A. Monorchio, “A frequency selective radome with wideband absorbing properties,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2740-2747, Jun. 2012 [37] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1551-1558, May. 2010. [38] F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1201-1209, Mar. 2013. [39] M. Li, S. Xiao, Y.-Y. Bai, and B.-Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas. Wireless Propag. Lett.,vol. 11, pp. 748-751, 2012. [40] Salisbury W. W, “ Absorbent body of electromagnetic waves,” U.S. Patent 2,599,944, 10 June 1952. [41] C.-N. Chiu and K.-P. Chang, “A novel miniaturized-element frequency selective surface having a stable resonance,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1175–1177, 2009. [42] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239-1245, May. 2007. [43] W. T. Wang, P. F. Zhang, S. X. Gong, B. Lu, J. Ling, and T.T. Wan, “Compact angularly stable frequency selective surface using hexagonal fractal configurations,” Microw. Opt. Technol. Lett., vol. 51, no. 11, pp. 2541-2544, Nov. 2009. [44] X.-D. Hu, X.-L, Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, “A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern,” IEEE Antennas. Wireless Propag. Lett.,vol. 8, pp. 1374-1377, 2009. [45] G. Yang, T. Zhang, W. Li, and Q. Wu, “A novel stable miniaturized frequency selective surface,” IEEE Antennas. Wireless Propag. Lett., vol. 9, pp. 1018-1021, 2010. [46] F. Bayatpur and K. Sarabandi, “Single-layer high-order miniaturized-element frequency-selective surfaces,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 774-781, Apr. 2008. [47] H. L. Liu, K. L. Ford and R. J. Langley, “Design methodology for a miniaturized frequency selective surface using lumped reactive components,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2732-2738, Sep. 2009. [48] R. Orta, P. Savi, and R. Tascone, “Numerical Green’s Function Technique for the Analysis of Screens Perforated by Multiply Connected Apertures,” IEEE Trans. Antennas Propag., AP-44(6), 765-776, June 1996 [49] R. Mittra, C. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces- a review,” IEEE Proc., 76(23), 1593-1615, 1988. [50] J. P. Montgomery, “Scattering by an infinite periodic array of conductors on a dielectric sheet,” IEEE Trans. Antennas Propag., AP-23(1), 70-75, 1975. [51] C. H. Tsao, R. Mittra, “Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag., AP-32(5), 478-486, 1984. [52] J. Huang, T. K. Wu, S. W. Lee, “Tri-band FSS with circular ring elements,” IEEE Trans. Antennas Propag., AP-42(2), 166-175, 1994. [53] C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech., vol. 21, issue 1, pp. 1-6, Jan. 1973. [54] T. Cwik, R. Mittra, K. C. Lang, T. K. Wu, “Frequency selective screens,” IEEE Antennas Propag., Newsl., Feature Article, April 1987. [55] R. J. Lagley, A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEEE Proc., Part H: Microwaves, Opt. Antennas 129(1), 1-6, 1982. [56] I. Anderson, “On the theory of self-resonant grids,” Bell Syst. Tech. J. 54(10), 1725- 1731, 1975. [57] E. L. Pelton, B. A. Munk, “Scattering from periodic arrays of crossed dipoles,” IEEE Trans. Antennas Propag., AP-27(3), 323-330, 1979. [58] D. M. Pozar, Microwave Engineering, John Wiley Sons, Inc., 2005. [59] G. H Schennum, “Frequency selective surfaces for multiple frequency antennas,” Microwave J., vol. 16(5), pp. 55-57, May 1973. [60] V. D. Agrawal, W. A. Imbriale, “Design of a dichroic Cassegrah subreflector,” IEEE Trans. Antennas Propag., vol. AP-27, no. 4, pp. 466-473, July 1979 [61] T. K. Wu, “Four-band frequency selective surface with double-square-loop patch,” IEEE Trans. Antennas Propag., vol. 42, issue. 12, pp. 1659-1663, Dec. 1994. [62] Comtesse, L. E., Langley, R. J., Parker, E. A., Vardaxoglou, J. C., “Frequency selective surfaces in dual and triple band offset reflector antennas,” European Microwave Conference, 1987. 17th, pp. 208 - 213, Oct. 1987. [63] C. H. Tsao, R. Mittra, “Spectral-domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem crosses,” IEEE Trans. Antennas Propag., AP-32(5), 478-486, 1984 [64] F. Huang, J. C. Batchelor and E. A. Park, “Interwoven convoluted element frequency selective surface with wide bandwidths,” Electro. Letters, vol. 42, no. 14, Jul. 2006. [65] P. Wu, F. Bai, Q. Xue, and S. Y. R. Hui, “Use of frequency selective surface for suppressing radio-frequency interference from wireless charging pads,” IEEE Trans. Industrial Electronics, vol. 61, no. 8, pp. 3969-3977, Aug. 2014 [66] J. Yang and Z. X. Shen, “A thin and broadband absorber using double-square loops,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 388–391, 2007. [67] Y. Luo, Y. Zhuang, and S. Z. Zhu, “Thin and broadband Salisbury screen absorber using Minkowski fractal structure,” in Proc. APMC, v2009, pp. 2573–2576. [68] A. Noor and Z. Hu, “Metamaterial dual polarised resistive Hilbert curve array radar absorber,” Microw. Antennas Propag., vol. 4, no. 6, pp. 667–673, 2010. [69] E. Yildirim and C. O. Aydin, “Design of a wideband radar absorbing structure,” in Proc. 5th EuCAP, 2011, pp. 1324–1327. [70] Y. R. Padoor, F. Media, and F. Mesa, “Multi-band high-impedance surface absorbers with a single resitive sheet: circuit theory model,”in Proc. IEEE Int. Symp. Antennas Propagat., 2011, pp 2264–2267. [71] F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas and Propag., vol. 4, no. 11, pp. 1720-1727, Nov. 2010. [72] T. M. Kollatou, A. I. Dimitriadis, N. V. Kantartzis, M. Himaje, and C. S. Antonopoulos, “A class of multi-band, polarization-insensitive, microwave metamaterial absorbers in EMC analysis,”in Proc. IEEE Int. Symp. Electromagn. Compat., 2012, pp. 1–4. [73] M. Abdin, U. Rafique, F. Malik, S. Qasim, M. A. Khan, and M. M. Ahmed, “A novel dual-band frequency selective surface absorber,” Int. J. Electromagn. Applicat., vol. 2, no. 6, pp. 182-185, 2012 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53576 | - |
| dc.description.abstract | 頻率選擇面(Frequency Selective Surface, FSS)為一種空間濾波器,經過適當設計的頻率選擇面可以對特定頻帶內的電磁波產生全反射或全穿透的效應。本文提出一種新穎的頻率選擇面微小化設計方法,用以解決系統封裝時所造成的雜訊輻射干擾。由於電磁及射頻干擾問題易發於高整合度的系統封裝,為了達成需求之系統的電氣特性,可用於系統封裝之微小化的頻率選擇面將是設計者的共同目標。透過本文所提出的微小化設計方法,可將頻率選擇面的尺寸大幅縮小,進而大幅提升頻率選擇面於系統級封裝上的應用。該方法跳脫原先只能在二維(X-Y平面)電路印刷版上設計元件限制,改以在第三維度(Z軸)引入連通柱(via)共設計的方法,此方法將比傳統二維頻率選擇面(Two-dimensional FSS, 2-D FSS)多一個設計參數的自由度,透過此方法設計出的頻率選擇面稱為2.5-D FSS。藉由本文提出的最佳化設計方法,此概念可被實現於單層或多層的印刷電路板中,其電氣尺寸僅有0.04 λg × 0.04 λg,更是所有頻率選擇面中尺寸最小的。 首先本文提出以在Z方向增加頻率選擇面元件的等效電感效應的方式來實現2.5維之超微小化結構,並透過完整的電路分析與全波模擬相互驗證後,將該元件實作於四層板上進行量測,量測所得之頻率響應圖有良好特性。為了更進一步將低製作成本,改利用文中提及的微小化方法來增加頻率選擇面元件的等效電容效應,此元件則可直接實現於單層印刷電路板上,量測所得之頻率響應圖亦有良好特性。上述分別透過電感或電容增強效應的元件之電路架構均被完整的分析,並詳述其設計流程。 有別於頻率選擇面只能與全反射或全穿透的濾波形式抑制雜訊干擾,頻率選擇面吸波材(absorber)則可以直接吸收雜訊,本文所提供之方法亦可以使用於微小化吸波材的設計,對於該方法所實現之吸波材亦均有完整電路分析與實驗結果相互驗證。值得注意的是,本文是第一個提出使用第三維度上的連通柱之設計方法來解決頻率選擇面微小化的問題 | zh_TW |
| dc.description.abstract | One novel 2.5-dimensional ultraminiaturized element and two methodologies are proposed in this dissertation for addressing the problem: as applying FSSs in a limited region, including a sufficient number of resonant-type elements to enable the FSS to act as an infinite FSS featuring low sensitivity to incident waves is difficult in practical application. At first, a new 2.5-dimensional ultraminiaturized element on a cost-effective printed circuit board to build a frequency selective surface (FSS). The proposed element consists of two main parts: a planar tapered meandering line (PTML) and a vertical via-based meandering line (VVML). Compared with previous published two-dimensional miniaturized elements, the proposed element is smaller (only 3.3% of the free space wavelength at the resonant frequency) and exhibits high resonant stability at various polarizations and incidence angles (only 0.4% deviation at the resonant frequency when the incident angle is as great as 75°). Second, a novel methodology is proposed for minimizing the size of the periodic element and tuning the resonant frequency of a single-layered frequency selective surface (FSS). Vertical vias are introduced to the FSS design in the methodology. Through the proposed methodology, users can easily vary the resonant frequency of the considered via-inserted FSS (VI-FSS), adding only some additional vias and without having to modify the original element pattern. For demonstrating the capability of the via-based methodology further, it was applied to two advanced applications: two miniaturized-element FSSs and an FSS absorber. Thus, a significant performance improvement in these applications reconfirmed the capability of the proposed methodology. Finally, another novel methodology is proposed for minimizing the size and thickness of FSS absorber element. Vertical vias are introduced to the FSS absorber design for the first time. The methodology can also be applied to dual band FSS absorber design. A novel via-inserted element is used to illustrate how to apply the methodology to dual band FSS absorber design. A prototype of the miniaturized-element and miniaturized-thickness dual absorber was created and examined. The results show that there is good consistency among full wave simulation, circuit model and measurement. It is worth noting that it is the first dissertation to employ inserted-via design concept for achieving FSS and FSS absorber minimization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:54Z (GMT). No. of bitstreams: 1 ntu-104-D00942007-1.pdf: 10788626 bytes, checksum: b5753925a9eca83535cdc5b7aa0b3492 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 .ii ABSTRACT iiii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiv ACRONYMS xv Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Review 3 1.3 Contribution 5 1.4 Dissertation Outline 6 Chapter 2 Introduction to Frequency Selective Surface, Analysis Techniques and Application Scenario Statement 9 2.1 Typical Frequency Selective Surface 9 2.1.1 Patch Type Element 9 2.1.2 Slot Type Element 14 2.1.3 Overview of the Elements of Typical FSSs 19 2.2 Analysis Techniques 23 2.2.1 Full Wave Simulation 23 2.2.2 S-parameters Network Analysis 26 2.3 Application Scenario 29 2.3.1 Radome 29 2.3.2 Dichroic Sub-Reflector 31 2.3.3 Absorbers 31 Chapter 3 Design Approach of 2.5 Dimensional Ultraminiaturized-Element Frequency Selective Surface 33 3.1 Design Approaches of Miniaturized FSS 34 3.1.1 Review of Using Capacitance and Inductance Enhancement Pattern 34 3.1.2 Review of Adding Capacitive and Inductive Components Type 38 3.1.3 Review of Coupling Type 39 3.2 Proposed Structure and Its Equivalent Circuit Model 42 3.2.1 Structure of the Proposed 2.5-D FSS 42 3.2.2 Equivalent Circuit Model of the Proposed 2.5-D FSS 47 3.2.3 Q Factor of the Proposed FSS 52 3.3 Experimental Validation 55 3.4 Parameter Study of Element Structure 61 3.4.1 Effect of VVML 61 3.4.2 Effect of Via length 66 3.5 Summary 68 Chapter 4 An Frequency Adjustment and Minimization Methodology for Frequency Selective Surface Design 69 4.1 Proposed Methodology and Its Illustration 70 4.1.1 Introduction to the Methodology 70 4.1.2 Illustration: Classic Jerusalem Cross as Examples 71 4.1.3 Equivalent Circuit Model 76 4.2 Design Guide and Implementation 83 4.2.1 Establishment of Design Chart 83 4.2.2 Fabrication and Experimental Validation 87 4.3 Parameter Study 89 4.4 Advanced Application of the Methodology 91 4.4.1 Two Miniaturized-Element 91 4.4.2 FSS Absorber 93 4.4.3 Non-90 Degree Structure 95 4.5 Summary 97 Chapter 5 A Band Adjusting and Size Minimization Methodology for Dual-band Frequency Selective Absorbers 99 5.1 Overview of Frequency Selective Surface Absorber 100 5.1.1 Introduction to Salisbury Screens Absorber 100 5.1.2 Review of FSS Absorber 102 5.2 Proposed Methodology and Its Illustration 106 5.2.1 Introduction to the Methodology 106 5.2.2 Illustration: Square Loop and EBG Absorber as Examples 109 5.2.3 Demonstration of Dual Band Absorber and Its Circuit Model 116 5.3 Parameter study 123 5.4 Fabrication and Measurement 128 5.5 Summary 135 Chapter 6 Conclusions and Future Works 137 6.1 Conclusions of the Dissertation 137 6.2 Suggestions for Future Works 138 REFERENCE 139 PUBLICATION LIST 147 | |
| dc.language.iso | en | |
| dc.subject | 吸波材 | zh_TW |
| dc.subject | 縮小化頻率選擇元件 | zh_TW |
| dc.subject | 頻率選擇面 | zh_TW |
| dc.subject | 縮小化 | zh_TW |
| dc.subject | 空間濾波器 | zh_TW |
| dc.subject | 連通柱 | zh_TW |
| dc.subject | spatial filter | en |
| dc.subject | via-based | en |
| dc.subject | resonance stability | en |
| dc.subject | miniaturized-element FSS | en |
| dc.subject | minimization | en |
| dc.subject | FSS absorber | en |
| dc.subject | frequency tuning | en |
| dc.subject | Frequency selective surface (FSS) | en |
| dc.title | 以連通柱實現超微小化頻率選擇面之設計方法 | zh_TW |
| dc.title | A Via-Based Methodology for Ultraminiaturized-Element Frequency Selective Surfaces | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳瑞北,邱奕鵬,盧信嘉,林怡成,鄭士康 | |
| dc.subject.keyword | 頻率選擇面,吸波材,縮小化,縮小化頻率選擇元件,空間濾波器,連通柱, | zh_TW |
| dc.subject.keyword | Frequency selective surface (FSS),frequency tuning,FSS absorber,minimization,miniaturized-element FSS,resonance stability,via-based,spatial filter, | en |
| dc.relation.page | 148 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 10.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
