請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53574完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱清良(Ching-Liang Chu) | |
| dc.contributor.author | Ting-Yi Su | en |
| dc.contributor.author | 蘇亭伊 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:53Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | 1. Berin MC, Shreffler WG. T(H)2 adjuvants: implications for food allergy. J Allergy Clin Immunol 2008, 121(6): 1311-1320; quiz 1321-1312.
2. Berin MC, Sampson HA. Mucosal immunology of food allergy. Curr Biol 2013, 23(9): R389-400. 3. Steele L, Mayer L, Berin MC. Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol Res 2012, 54(1-3): 75-82. 4. Otsu K, Dreskin SC. Peanut allergy: an evolving clinical challenge. Discov Med 2011, 12(65): 319-328. 5. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med 2012, 18(5): 693-704. 6. Yang YH, Chiang BL. Novel approaches to food allergy. Clin Rev Allergy Immunol 2014, 46(3): 250-257. 7. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol 2010, 125(2 Suppl 2): S116-125. 8. Wang J, Sampson HA. Food allergy. J Clin Invest 2011, 121(3): 827-835. 9. Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 2014, 133(2): 309-317. 10. Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol 2000, 106(1 Pt 1): 150-158. 11. Li X, Huang CK, Schofield BH, Burks AW, Bannon GA, Kim KH, et al. Strain-dependent induction of allergic sensitization caused by peanut allergen DNA immunization in mice. J Immunol 1999, 162(5): 3045-3052. 12. Li XM, Schofield BH, Huang CK, Kleiner GI, Sampson HA. A murine model of IgE-mediated cow's milk hypersensitivity. J Allergy Clin Immunol 1999, 103(2 Pt 1): 206-214. 13. Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol Today 1999, 20(2): 95-101. 14. Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1999, 1450(3): 177-190. 15. Adel-Patient K, Bernard H, Ah-Leung S, Creminon C, Wal JM. Peanut- and cow's milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy 2005, 60(5): 658-664. 16. Capobianco F, Butteroni C, Barletta B, Corinti S, Afferni C, Tinghino R, et al. Oral sensitization with shrimp tropomyosin induces in mice allergen-specific IgE, T cell response and systemic anaphylactic reactions. Int Immunol 2008, 20(8): 1077-1086. 17. Leung PS, Lee YS, Tang CY, Kung WY, Chuang YH, Chiang BL, et al. Induction of shrimp tropomyosin-specific hypersensitivity in mice. Int Arch Allergy Immunol 2008, 147(4): 305-314. 18. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012, 30: 1-22. 19. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002, 20: 197-216. 20. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003, 21: 685-711. 21. Chehade M, Mayer L. Oral tolerance and its relation to food hypersensitivities. J Allergy Clin Immunol 2005, 115(1): 3-12; quiz 13. 22. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011, 34(2): 237-246. 23. Zhang X, Izikson L, Liu L, Weiner HL. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 2001, 167(8): 4245-4253. 24. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006, 203(3): 519-527. 25. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 2007, 8(10): 1086-1094. 26. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 2009, 206(13): 3101-3114. 27. Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 2010, 59(5): 595-604. 28. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007, 204(8): 1757-1764. 29. Rescigno M. Dendritic cells in oral tolerance in the gut. Cell Microbiol 2011, 13(9): 1312-1318. 30. Zhou Y, Kawasaki H, Hsu SC, Lee RT, Yao X, Plunkett B, et al. Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med 2010, 16(10): 1128-1133. 31. Chambers SJ, Bertelli E, Winterbone MS, Regoli M, Man AL, Nicoletti C. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naive recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology 2004, 112(1): 72-79. 32. Shreedhar VK, Kelsall BL, Neutra MR. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer's patches. Infect Immun 2003, 71(1): 504-509. 33. Anjuere F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, et al. In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. J Immunol 2004, 173(8): 5103-5111. 34. Blazquez AB, Berin MC. Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J Immunol 2008, 180(7): 4441-4450. 35. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 2013, 131(1): 187-200 e181-188. 36. Feng BS, Chen X, He SH, Zheng PY, Foster J, Xing Z, et al. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J Allergy Clin Immunol 2008, 122(1): 55-61, 61 e51-57. 37. Yang PC, Xing Z, Berin CM, Soderholm JD, Feng BS, Wu L, et al. TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology 2007, 133(5): 1522-1533. 38. Meyers JH, Chakravarti S, Schlesinger D, Illes Z, Waldner H, Umetsu SE, et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol 2005, 6(5): 455-464. 39. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007, 449(7161): 419-426. 40. Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, et al. Recent research and development of Antrodia cinnamomea. Pharmacol Ther 2013, 139(2): 124-156. 41. Chiang HC, Wu DP, Cherng IW, Ueng CH. A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochem Rev 1995, 39(3): 613-616. 42. Yue PYK, Wong YY, Chan TYK, Law CKM, Tsoi YK, Leung KSY. Review of biological and pharmacological activities of the endemic Taiwanese bitter medicinal mushroom, Antrodia camphorata. Int J Med Mushrooms 2012, 14(3): 241-256. 43. Wu MD, Cheng MJ, Wang WY, Huang HC, Yuan GF, Chen JJ, et al. Antioxidant activities of extracts and metabolites isolated from the fungus Antrodia cinnamomea. Nat Prod Res 2011, 25(16): 1488-1496. 44. Liu DZ, Liang YC, Lin SY, Lin YS, Wu WC, Hou WC, et al. Antihypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-chih) in spontaneously hypertensive rats. Biosci Biotechnol Biochem 2007, 71(1): 23-30. 45. Suk FM, Lin SY, Chen CH, Yen SJ, Su CH, Liu DZ, et al. Taiwanofungus camphoratus activates peroxisome proliferator-activated receptors and induces hypotriglyceride in hypercholesterolemic rats. Biosci Biotechnol Biochem 2008, 72(7): 1704-1713. 46. Lien HM, Lin HW, Wang YJ, Chen LC, Yang DY, Lai YY, et al. Inhibition of anchorage-independent proliferation and G0/G1 cell-cycle regulation in human colorectal carcinoma cells by 4,7-Dimethoxy-5-Methyl-l,3-Benzodioxole isolated from the fruiting body of Antrodia camphorate. Evid Based Complement Alternat Med 2011, 2011: 984027. 47. Tu SH, Wu CH, Chen LC, Huang CS, Chang HW, Chang CH, et al. In vivo antitumor effects of 4,7-dimethoxy-5-methyl-1,3-benzodioxole isolated from the fruiting body of Antrodia camphorata through activation of the p53-mediated p27/Kip1 signaling pathway. J Agric Food Chem 2012, 60(14): 3612-3618. 48. Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, et al. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005, 5(13-14): 1914-1925. 49. Liu KJ, Leu SJ, Su CH, Chiang BL, Chen YL, Lee YL. Administration of polysaccharides from Antrodia camphorata modulates dendritic cell function and alleviates allergen-induced T helper type 2 responses in a mouse model of asthma. Immunology 2010, 129(3): 351-362. 50. Yu YL, Chen IH, Shen KY, Huang RY, Wang WR, Chou CJ, et al. A triterpenoid methyl antcinate K isolated from Antrodia cinnamomea promotes dendritic cell activation and Th2 differentiation. Eur J Immunol 2009, 39(9): 2482-2491. 51. Zhao CQ, Li TL, He SH, Chen X, An YF, Wu WK, et al. Specific immunotherapy suppresses Th2 responses via modulating TIM1/TIM4 interaction on dendritic cells. Allergy 2010, 65(8): 986-995. 52. Chu CL, Lowell CA. The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. J Immunol 2005, 175(5): 2880-2889. 53. Chen T, Guo J, Yang M, Han C, Zhang M, Chen W, et al. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood 2004, 103(2): 413-421. 54. Huang RY, Yu YL, Cheng WC, OuYang CN, Fu E, Chu CL. Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol 2010, 184(12): 6815-6821. 55. Lee CC, Wang CN, Lai YT, Kang JJ, Liao JW, Chiang BL, et al. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br J Pharmacol 2010, 161(7): 1496-1511. 56. Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006, 6(6): 476-483. 57. Kawamura YI, Kawashima R, Shirai Y, Kato R, Hamabata T, Yamamoto M, et al. Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF-kappaB translocation. Eur J Immunol 2003, 33(11): 3205-3212. 58. Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KH. Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003, 171(5): 2384-2392. 59. Bromander A, Holmgren J, Lycke N. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. J Immunol 1991, 146(9): 2908-2914. 60. Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, et al. Activation of c-Kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med 2008, 14(5): 565-573. 61. Sallusto F, Lanzavecchia A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 2000, 177: 134-140. 62. Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KHG. Cholera Toxin Promotes the Induction of Regulatory T Cells Specific for Bystander Antigens by Modulating Dendritic Cell Activation. The Journal of Immunology 2003, 171(5): 2384-2392. 63. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005, 5(8): 617-628. 64. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006, 176(2): 803-810. 65. Ohshima Y, Yang LP, Uchiyama T, Tanaka Y, Baum P, Sergerie M, et al. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 1998, 92(9): 3338-3345. 66. Baum PR, Gayle RB, 3rd, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, et al. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J 1994, 13(17): 3992-4001. 67. Hoshino A, Tanaka Y, Akiba H, Asakura Y, Mita Y, Sakurai T, et al. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol 2003, 33(4): 861-869. 68. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004, 117(4): 515-526. 69. Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 2003, 3(6): 454-462. 70. Heufler C, Koch F, Stanzl U, Topar G, Wysocka M, Trinchieri G, et al. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 1996, 26(3): 659-668. 71. Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 2000, 30(8): 2394-2403. 72. Cong Y, Oliver AO, Elson CO. Effects of cholera toxin on macrophage production of co-stimulatory cytokines. Eur J Immunol 2001, 31(1): 64-71. 73. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 2007, 7(1): 31-40. 74. Cassel D, Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A 1977, 74(8): 3307-3311. 75. la Sala A, He J, Laricchia-Robbio L, Gorini S, Iwasaki A, Braun M, et al. Cholera toxin inhibits IL-12 production and CD8alpha+ dendritic cell differentiation by cAMP-mediated inhibition of IRF8 function. J Exp Med 2009, 206(6): 1227-1235. 76. Anosova NG, Chabot S, Shreedhar V, Borawski JA, Dickinson BL, Neutra MR. Cholera toxin, E. coli heat-labile toxin, and non-toxic derivatives induce dendritic cell migration into the follicle-associated epithelium of Peyer's patches. Mucosal Immunol 2008, 1(1): 59-67. 77. Jaramillo M, Olivier M. Hydrogen peroxide induces murine macrophage chemokine gene transcription via extracellular signal-regulated kinase- and cyclic adenosine 5'-monophosphate (cAMP)-dependent pathways: involvement of NF-kappa B, activator protein 1, and cAMP response element binding protein. J Immunol 2002, 169(12): 7026-7038. 78. Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 2002, 16(2): 257-270. 79. Kim KJ, Kim HA, Seo KH, Lee HK, Kang BY, Im SY. Cholera toxin breakdowns oral tolerance via activation of canonical NF-kappaB. Cell Immunol 2013, 285(1-2): 92-99. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53574 | - |
| dc.description.abstract | 食物過敏是指對食物中的蛋白有異常、過度之免疫反應。樹突細胞 (Dendritic cells) 在啟動免疫反應及引起食物過敏中扮演重要角色。樟芝 (Antrodia cinnamomea) 是傳統中藥材,研究指出從樟芝分離出來的4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1) 具有抗癌症效果。本研究探討SY-1對於樹突細胞之免疫調節功能及其在食物過敏中潛在的療效。霍亂毒素 (Cholera toxin)是 研究食物過敏中最常用的黏膜佐劑。研究結果指出,SY-1能有效地抑制霍亂毒素誘發活化樹突細胞後,細胞表面MHC II及Costimulatory molecule (CD40, CD80, CD86)表現及多種細胞激素與趨化激素的產生;於試管 (in vitro) 或活體 (in vivo) 實驗中,SY-1可抑制樹突細胞移動能力。藉由口服餵予卵白蛋白 (ovalbumin;OVA) 及霍亂毒素,在BALB/c小鼠中建立食物過敏的動物疾病模式,經致敏化的小鼠產生抗原專一性E型免疫球蛋白 (OVA-specific IgE) 和過敏性反應 (anaphylacxis) ,脾臟細胞也會對OVA反應,引起抗原專一性的細胞增生及分泌細胞激素IL-4, IL-5, IL-13和IFN-γ;相對的,對照組小鼠並無這些反應。在每次致敏化小鼠時口服給予SY-1,利用食物過敏的動物疾病模式,進一步探討SY-1的免疫抑制作用,結果顯示,接受口服SY-1的小鼠,其血清中OVA專一性IgE較低,之後經口攝入OVA時不會產生顯著的過敏症狀,此外,脾臟細胞的OVA專一性細胞增生及細胞激素分泌反應較輕微。由上述結果可知,藉由抑制樹突細胞活化及功能,SY-1對於食物過敏具有潛在的療效。 | zh_TW |
| dc.description.abstract | Food allergy is an immune-mediated adverse reactivity to food proteins. Dendritic cells (DCs) are critical in initiating an immune response and play an important role in establishing food allergy. 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1) isolated from Antrodia cinnamomea (AC), a medicinal fungus, is reported to possess antitumor properties. In this study, the immunomodulatory effects of SY-1 on DCs and the therapeutic potential against food allergy were examined. Cholera toxin (CT) is the most commonly used mucosal adjuvant in food allergy. SY-1 effectively inhibited CT-induced DC activation by reducing the expression levels of MHC class II and costimulatory molecules and the production of proinflammatory cytokines/chemokines. In addition, CT-induced DC migration was diminished by SY-1 for both in vitro and in vivo model. The murine model of food allergy has been established in BALB/c mice by oral feeding with OVA plus CT. OVA-specific IgE and anaphylacxis were provoked in sensitized mice. OVA-specific cell proliferation and IL-4, IL-5, IL-13 and IFN-γ cytokine production were induced in spleen. In contrast, these phenomena were absent in the control mice. Oral administrated of SY-1 during each sensitization to investigate the immunosuppressive effect of SY-1 in the murine model of food allergy. Serum OVA-specific IgE were markedly declined in mice fed with SY-1. These mice were protected from anaphylaxis after OVA challenge. Furthermore, SY-1 significantly ameliorated OVA-specific cell proliferation and cytokine production of splenocytes. Taken together, these results suggest that SY-1 may have therapeutic potential against food allergy by suppressing DC activation and function. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:53Z (GMT). No. of bitstreams: 1 ntu-104-R02449012-1.pdf: 3057130 bytes, checksum: 6713c454817ec8d197d49f85a947281a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Content v List of Figures viii Chapter Ⅰ. Introduction 1 1. Food allergy 1 1.1 Food allergy 1 1.2 Murine model of food allergy 2 2. Dendritic cell 3 2.1 Dendritic cell 3 2.2 DCs in oral tolerance 4 2.3 DCs in allergic sensitization 5 2.4 Taking DCs into Medicine 7 3. 4,7-dimethoxy-5-methyl-l,3-benzodioxole 8 3.1 Antrodia cinnamomea 8 3.2 4,7-dimethoxy-5-methyl-l,3-benzodioxole 9 Chapter Ⅱ. Specific Aims 10 Chapter Ⅲ. Materials and methods 12 1. Mice 12 2. Generation of DCs from murine bone marrow 12 3. Isolation of 4,7-dimethoxy-5-methyl-1,3-benzodioxole from AC Mycelia 13 4. SY-1 cytotoxicity assay 13 5. Analysis of DCs maturation 14 6. Measurement of cytokine and chemokine production 14 7. Assay of DCs migration 15 8. Real-time PCR 16 9. RT-qPCR primer sequence 16 10. Antigen sensitization and challenge 18 11. Measurement of serum immunoglobulin 18 12. Assessment of hypersensitivity reactions 19 13. Plasma histamine levels 19 14. Antigen-specific proliferation assay and cytokine production 19 15. Statistical analysis 20 Chapter Ⅳ. Results 21 1. The effect of SY-1 on cell viability 21 2. SY-1 suppressed the CT-induced DCs maturation 21 3. The cytokines and chemokines released from CT-stimulated DCs were inhibited by SY-1 22 4. The migration of CT-stimulated DCs was impaired by SY-1 23 5. SY-1 did not affect OX40L and Jagged-2 expression on CT-activated DCs 25 6. SY-1 efficiently reduced TIM-4 expression in CT-activated DCs 25 7. SY-1 did not promote Th1 or Treg immune response 26 8. OVA-specific IgE was increased after oral sensitization with CT 27 9. Induction of anaphylactic responses in OVA + CT-immunized mice 28 10. Induction of OVA-specific T cell proliferation and cytokine production. 29 11. SY-1 treatment decreased the OVA-specific IgE production in OVA + CT-immunized mice 30 12. SY-1 treatment attenuated anaphylactic response in OVA + CT-immunized mice 31 13. SY-1 treatment diminished OVA-specific T cell proliferation and cytokine production in OVA + CT-immunized mice 31 Chapter Ⅴ. Discussion 33 Chapter Ⅵ. References 38 Chapter Ⅶ. Figures 47 | |
| dc.language.iso | en | |
| dc.subject | 食物過敏 | zh_TW |
| dc.subject | 樹突細胞 | zh_TW |
| dc.subject | 樟芝 | zh_TW |
| dc.subject | 化合物SY-1 | zh_TW |
| dc.subject | 霍亂毒素 | zh_TW |
| dc.subject | Cholera toxin | en |
| dc.subject | Food allergy | en |
| dc.subject | Dendritic cells | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | 7-dimethoxy-5-methyl-l | en |
| dc.subject | 3-benzodioxole | en |
| dc.subject | SY-1 | en |
| dc.title | 探討樟芝化合物SY-1在食物過敏中對樹突細胞功能之免疫抑制作用 | zh_TW |
| dc.title | The immunosuppressive effect of SY-1 isolated from Antrodia cinnamomea on dendritic cell functions in food allergy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江伯倫(Bor-Luen Chiang),陳俊任(Chun-Jen Chen) | |
| dc.subject.keyword | 食物過敏,樹突細胞,樟芝,化合物SY-1,霍亂毒素, | zh_TW |
| dc.subject.keyword | Food allergy,Dendritic cells,Antrodia cinnamomea,4,7-dimethoxy-5-methyl-l,3-benzodioxole,SY-1,Cholera toxin, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
