請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建中(Chien-chung Chen) | |
| dc.contributor.author | Pao-Chou Cho | en |
| dc.contributor.author | 卓柏州 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:51Z | - |
| dc.date.available | 2017-08-26 | |
| dc.date.copyright | 2015-08-26 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-06 | |
| dc.identifier.citation | References
Achtman, R. L., Hess, R. F., & Wang, Y. Z., (2003). Sensitivity for global shape detection. Journal of Vision, 3, 616–624. Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology, 48, 217–237. Albrecht, D. G., Farrar, S. B., & Hamilton, D. B. (1984). Spatial contrast adaptation characteristics of neurons recorded in the cat's visual cortex. Journal of Physiology, 347, 713-739. Anzai A, Peng X, & Van Essen D. C. (2007). Neurons in monkey visual area V2 encode combinations of orientations. Nature Neuroscience, 10, 1313–1321. Badcock, D. R., Clifford, C. W. G., & Khuu, S. K. (2005). Interactions between luminance and contrast signals in global form detection. Vision Research, 45, 881–889. Braun, J. (1999). On the detection of salient contours. Spatial Vision, 12, 211–225. Bevington, P. R., & Robinson, D. K. (1992). Data reduction and error analysis for the physical sciences. New York: McGraw-Hill. Burr, D., & Ross, J. (2006). The effects of opposite polarity dipoles on the detection of Glass patterns. Vision Research, 46, 1139–1144. Chen, C. C. (2009). A masking analysis of Glass pattern perception. Journal of Vision. 9(12), 22, 1-11. Chen, C. C., & Foley, J. M. (2004). Pattern detection: interactions between oriented and concentric patterns. Vision Research, 44(9), 915-924. doi: 10.1016/j.visres.2003.11.017 Chen, C. C., Foley, J. M. & Brainard, D. H. (2000). Detection of chromoluminance patterns on chromoluminance pedestals II: Model. Vision Research, 40, 789-803. Chen, C. C., & Tyler, C. W. (2000). Spatial long-range modulation of contrast discrimination. SPIE Proceedings, 4080, 87-93. Chen, C. C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. The Proceedings of the Royal Society (London) Series B, 268, 509-516. Crowder, N. A., Hietanen, M.A., Price, N. S., Clifford, C.W., & Ibbotson, M. R., (2008). Dynamic contrast change produces rapid gain control in visual cortex. Journal of Physiology, 586, 4107– 4119. Dakin S. C. Bex P. J. (2001). Local and global visual grouping: Tuning for spatial frequency and contrast. Journal of Vision, 1(2):4, 99–111. Dakin, S. C., & Hess, R. F. (1998). Spatial-frequency tuning of visual contour integration. Journal of the Optical Society of America. A, 15, 1486–1499. Dakin, S. C., & Hess, R. F. (1999). Contour integration and scale combination processes in visual edge detection. Spatial Vision, 12, 309–327. DeAngelis, G. C., Ohzawa, I. and Freeman, R. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neuroscience, 18, 451–458. Earle, D. C. (1999). Glass patterns: grouping by contrast similarity. Perception, 28, 1373–1382. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1, 1–47. Field, D. J. (1993). Scale-invariance and self-similar wavelet transforms: an analysis of natural scenes and mammalian visual systems. In M. Farge, J. C. R. Hunt, & J. C. Vassilicos (Eds.), Wavelets, Fractals, and Fourier Transforms, (pp. 51–193). Oxford: Clarendon Press. Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: evidence for a local ‘‘association field’’. Vision Research, 33, 173–193. Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 11, 1710–1719. Foley, J. M. & Chen C.C. (1999). Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: Threshold measurements and a model. Vision Research, 39, 3855-3872. Gallant, J. L., Braun, J., & Van Essen, D. C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 259, 100–103. Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurence in natural images predicts contour grouping performance. Vision Research, 41, 711-724. Gilchrist, A. (1990) Developments in the Gestalt theory of lightness perception. In I. Rock (Ed.). The Legacy of Solomon Asch: Essays in Cognition and Social Psychology. Hillsdale: Lawrence Erlbaum Associates. Gilchrist, A. (2014). Perceptual organization in lightness. In J. Wagemans (Ed.), Oxford Handbook of Perceptual Organization (in press). Oxford, U.K.: Oxford University Press. Glass, L. (1969). Moire´ effect from random dots. Nature, 223, 578–580. Glass, L., & Switkes, E. (1976). Pattern recognition in humans: Correlations which cannot be perceived. Perception, 5, 67–72. Hansen, T., & Gegenfurtner, K. R. (2009). Independence of color and luminance edges in natural scenes. Visual Neuroscience, 26, 35-49. Hegde, J., & Van Essen, D. C. (2000). Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience, 20, RC61. Hegde, J. & Van Essen, D. C. (2004). Temporal dynamics of shape analysis in macaque visual area V2. Journal of Neurophysiology, 92:3030—3042. Hegger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197. Hess, R. F., & Dakin, S. C. (1999). Contour integration in the peripheral field. Vision Research, 39, 947–959. Hess, R. F., Dakin, S. C., Kapoor, N., & Tewfik, M. (2000). Contour interaction in fovea and periphery. Journal of the Optical Society of America. A, 17, 1516–1524. Huang, P. C., & Chen C. C. (2009). Pattern-masking investigations of the 2nd-order visual mechanisms. SPIE Proceedings, 7240, 724016-1-724016-11. Huang, P. C., & Chen, C. C. (2014). A comparison of pedestal effects in first- and second-order patterns. Journal of Vision, 14(1): 9, 1–15. Huang, P. C., & Chen, C. C. (in press). Contrast gain control in plaid pattern detection. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195, 215–243. Ito, M., & Komatsu, H. (2004). Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. Journal of Neuroscience, 24, 3313–3324. Kobatake, E., & Tanaka, K. (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology, 71, 856–867. Kohn, A., & Movshon, J. A. (2004). Adaptation change the direction of tuning of macaque MT neurons. Nature Neuroscience, 7, 764 –772. Khuu, S. K., & Hayes, A. (2005). Glass-pattern detection is tuned for stereo-depth. Vision Research. 45, 2461–2469. Mandelli, M. J., & Kiper, D. C. (2005). The local and global processing of chromatic Glass patterns. Journal of Vision, 5(5): 2, 405–416, http://journalofvision.org/ 5/5/2/, doi:10.1167/5.5.2. Mannion, D. J., McDonald, J. S., & Clifford, C. W. (2009). Discrimination of the local orientation structure of spiral Glass patterns early in human visual cortex. NeuroImage, 46(2), 511-515. McDonald, J. S., Mannion, D. J., & Clifford, C. W. (2012). Gain control in the response of human visual cortex to plaids. Journal of Neurophysiology, 107(9), 2570-80. doi: 10.1152/jn.00616.2011. Meese, T. S., Summers, R. J., Holmes, D. J. & Wallis, S. A. (2007). Contextual modulation involves suppression and facilitation from the center and the surround. Journal of Vision, 7(4): 7, 1–21, http://journalofvision.org/7/4/7/, doi:10.1167/7.4.7. Merigan, W. H. (1996). Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Visual Neuroscience, 13, 51– 60. Naka, K. I. & Rushton, W. A. H. (1966). S-potentials from luminosity units in the retina of fish (cyprinidae). Journal of Physiology, 185(3), 587-599. Nakayama, K., He, Z.J. and Shimojo, S. (1995) Visual surface representation: a critical link between lower-level and higher level vision. In Kosslyn, S.M. and Osherson, D.N. Vision. In Invitation to Cognitive Science. M.I.T. Press, p.1-70. Nankoo J. F., Madan C. R., Spetch M. L., & Wylie D. R. (2012). Perception of dynamic glass patterns. Vision Research, 72, 55–62. Or, C. C., Khuu S. K., Hayes A. (2010). Moving Glass patterns: asymmetric interaction between motion and form. Perception, 39, 447–46. Ostwald, D., Lam, J. M., Li S, & Kourtzi, Z. (2008). “Neural coding of global form in the human visual cortex.” Journal of Neurophysiology, 99(5):2456-69. Prazdny K. (1984). On the perception of Glass patterns. Perception, 13, 469-478. Radonjić, A., Allred, S. R., Gilchrist, A. L., & Brainard, D. H. (2011). The dynamic range of human lightness perception. Current Biology, 21(22), 1931-1936. Ross, J., & Speed, H. D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings of the Royal Society of London B: Biological Sciences, 246, 61–69. Sasaki, Y. (2007). Processing local signals into global patterns. Current Opinion in Neurobiology, 17, 132-139. Sclar, G., Lennie, P. & DePriest, D. D. (1989). Contrast adaptation in striate cortex of macaque. Vision Research, 29, 747-755. Smith, M. A., Bair, W., & Movshon, J. A. (2002). Signals in macaque V1 neurons that support the perception of Glass patterns. Journal of Neuroscience. 22, 8334–8345. Smith, M. A., Kohn, A., & Movshon, J. A. (2007). Glass pattern responses in macaque V2 neurons. Journal of Vision, 7(3): 5, 1-15. Snowden, R. J., & Hammett, S. T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Research, 38, 1935–1945. Stevens, K. A. (1978). Computation of locally parallel structure. Biological Cybernetics, 29, 19-28. Stevens, K. A. (1981). The information content of texture gradients. Biological Cybernetics, 42, 95–105. Teo, P. C., & Heeger, D. K. (1994). Perceptual image distortion. SPIE Proceeding, 2179, 127–141. Tolhurst, D. J., Movshon, J. A., & Thompson, I. D. (1981). The Dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Experimental Brain Research, 41, 414-419. Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: an integrated systems perspective. Science, 255(5043), 419-423. von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 224, (4654),1260–1262. doi: 10.1126/science.6539501 Watson, A. B., & Solomon, J. A. (1997). Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America, 14, 2379–2391. Wertheimer, M. (1958). Principles of perceptual organization. In D. C. Beardslee, & M. Wertheimer, Reading in Perception. Princeton: Van Nostrand. Wilson, H. R., & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research, 33, 1133–1149. Wilson, J. A., Switkes, E., & De Valois, R. L. (2004). Glass pattern studies of local and global processing of contrast variations. Vision Research, 44(22), 2629-2641. doi: 10.1016/j.visres.2003.06.001 Wilson, J. A. & Switkes, E. (2005). Integration of differing chromaticities in early and midlevel spatial vision. Journal of the Optical Society of America A, 22, 2169–2181. Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implications for form vision. Vision Research, 38, 2933–2947. Wilson, H. R., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research, 17, 2325–2330. Wu, C. C. & Chen, C. C. (2010). Distinguishing lateral interaction from uncertainty reduction in collinear flanker effect on contrast discrimination. Journal of Vision, 10(3), 8, 1-14. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53571 | - |
| dc.description.abstract | Glass圖形(Glass, 1969)是一群由兩點所組成的「雙點」隨機分佈組成,我們所知覺到的圖形取決於局部雙點的幾何位置排列。本實驗中我們使用一個由一群「三點」隨機分佈組成的新圖型,這些三點之間等距,這些三點中最接近圖形的中心的點稱之為「錨」(anchor)。如果藉由操弄三點各自的亮度對比,使得視覺系統在辨識整體圖形時將錨與其中一邊的點連成一對,則整體可看見一個方向的螺旋結構;反之若錨與另一個邊點連在一起,則另一方向旋轉的圖形可預見。在此同時,未被串聯第三點的亮度對比也同時影響我們對圖形的判斷。本研究旨在研究藉由操弄局部三點各自的亮度對比是如何影響到我們知覺系統是如何將其中兩點整合成雙點進而影響後續我們對整體圖形的辨識。實驗情境中錨的亮度對比分別選用-20分貝及-10.46分貝,而三點中另外兩邊點的亮度對比則各自隨機抽取使用-29.54到-0.92分貝之間的值。在強迫選擇派典(forced choice task)下,探究受試者會將這新圖形分類為正螺旋亦或是逆螺旋的機率。結果顯示隨著其中一邊的點的對比亮度提升時,與錨連成一對而形成整體圖形的機率也隨之上升,然而當這個邊點與錨的亮度差異過大時,機率又再度下降。進一步而言,邊點與錨連結在一起機率高峰並非是在兩點的對比亮度最相近處,而會受到未被串串聯第三點的調節而此第三點的亮度對比上升而往被串聯點為高亮度對比的方向移動。實驗數據後來以「對比增益控制」(contrast gain control)模型模擬我們知覺歷程,此調控歷程之輸出為一個別運算元的反應除以一群相關的運算單元的反應加總,而未被串聯第三點的影響則透過增加該群運算單元的量抑制整體的輸出作解釋。本研究結果支持人類視覺在處理亮度對比時需仰賴此增益控制機制的調節。 | zh_TW |
| dc.description.abstract | Glass patterns (Glass, 1969) consist of randomly distributed dot pairs and their orientation is determined by certain mathematical transformations. In this study, a new pattern with a group of randomly distributed triple dots (tripoles) was used. Each tripole comprises an “anchor dot,” which is close to the center of the pattern, and two side dots. The distance between the anchor dot and each side dot as well as between the two side dots is equal. By manipulating the luminance contrast of each dot in the tripoles, if in the tripoles, the visual system groups the anchor dot with one of the two side dots, and the Glass pattern will be perceived to spiral in one direction (and vice versa). Meanwhile, the other side dot, which is not being grouped, would systematically influences the process of the grouped dots. The purpose of this study is to see how the variation of luminance contrast of intra-tripoles affects the local grouping and, then, the global perception. The anchor-contrast was either -20 or -10.46dB, and the contrast of side dots ranged from -29.54 to -0.92dB. The study involved a forced-choice paradigm. The probability of an observer’s categorization of a tripole Glass pattern as counter-clockwise or clockwise pattern was measured. The result showed that as the contrast of a side dot increased, the probability of it being grouped with the anchor dot increased initially, and then, the probability dropped as the contrast of side dot is greatly different from the anchor dot. Furthermore, the peak of response curve was not at where the grouped dots are of similar contrast, but where they are modulated by the contrast of the dot, which was not being grouped. As the contrast of the side dot, which was not being grouped to the anchor dot, increased, the peaks moved toward where the grouped side dots were of high contrast. The result could be fitted with a divisive inhibition model, which was the response of each mechanism resulting from an output of the linear operator divided by the sum of relevant channels. Meanwhile, the shift of the response curves could be accounted for by the inhibition input, which suggests that the contrast processing of Glass pattern is mediated by a contrast gain-control mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:51Z (GMT). No. of bitstreams: 1 ntu-104-R00227118-1.pdf: 1574706 bytes, checksum: 89655d2caf638b8ed4ee2b2e219f178f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Introduction - 1 -
Method - 11 - Apparatus - 11 - Stimuli - 11 - Procedure - 15 - Observers - 17 - Results - 18 - Discussion - 31 - Model - 35 - Conclusion - 48 - References - 50 - | |
| dc.language.iso | en | |
| dc.subject | 分類作業 | zh_TW |
| dc.subject | 結構 | zh_TW |
| dc.subject | Glass pattern | zh_TW |
| dc.subject | 亮度對比 | zh_TW |
| dc.subject | 形狀 | zh_TW |
| dc.subject | luminance contrast | en |
| dc.subject | Glass patterns | en |
| dc.subject | form | en |
| dc.subject | shape | en |
| dc.subject | categorization | en |
| dc.title | 亮度對比在知覺圖形處理之增益控制機制 | zh_TW |
| dc.title | Contrast Gain Control in Glass Pattern Perception | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 襲充文(Chon-Wen Shyi),黃碧群(Pi-Chun Huang) | |
| dc.subject.keyword | 亮度對比,Glass pattern,結構,分類作業,形狀, | zh_TW |
| dc.subject.keyword | luminance contrast,Glass patterns,form,categorization,shape, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
