請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53569完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陶秘華 | |
| dc.contributor.author | Yu-Hua Lan | en |
| dc.contributor.author | 藍玉樺 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:25:50Z | - |
| dc.date.available | 2018-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-05 | |
| dc.identifier.citation | 1. Liang TJ. 2009. Hepatitis B: the virus and disease. Hepatology 49:S13-21.
2. Wright TL, Mamish D, Combs C, Kim M, Donegan E, Ferrell L, Lake J, Roberts J, Ascher NL. 1992. Hepatitis B virus and apparent fulminant non-A, non-B hepatitis. Lancet 339:952-955. 3. Beasley RP, Trepo C, Stevens CE, Szmuness W. 1977. The e antigen and vertical transmission of hepatitis B surface antigen. American journal of epidemiology 105:94-98. 4. McMahon BJ, Alward WL, Hall DB, Heyward WL, Bender TR, Francis DP, Maynard JE. 1985. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. The Journal of infectious diseases 151:599-603. 5. Berk PD, Popper H. 1978. Fulminant hepatic failure. The American journal of gastroenterology 69:349-400. 6. Tsai SL, Chen PJ, Lai MY, Yang PM, Sung JL, Huang JH, Hwang LH, Chang TH, Chen DS. 1992. Acute exacerbations of chronic type B hepatitis are accompanied by increased T cell responses to hepatitis B core and e antigens. Implications for hepatitis B e antigen seroconversion. The Journal of clinical investigation 89:87-96. 7. Chu CM, Liaw YF. 1987. Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology 92:220-225. 8. Rehermann B, Nascimbeni M. 2005. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5:215-229. 9. Liaw YF, Chu CM. 2009. Hepatitis B virus infection. Lancet 373:582-592. 10. Chemin I, Zoulim F. 2009. Hepatitis B virus induced hepatocellular carcinoma. Cancer letters 286:52-59. 11. Robinson WS. 1994. Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annual review of medicine 45:297-323. 12. Kim CM, Koike K, Saito I, Miyamura T, Jay G. 1991. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317-320. 13. Liaw YF. 2006. Hepatitis B virus replication and liver disease progression: the impact of antiviral therapy. Antiviral therapy 11:669-679. 14. Craxi A, Antonucci G, Camma C. 2006. Treatment options in HBV. Journal of hepatology 44:S77-83. 15. Locarnini S, Hatzakis A, Chen DS, Lok A. 2015. Strategies to control hepatitis B: Public policy, epidemiology, vaccine and drugs. Journal of hepatology 62:S76-86. 16. Wang L, Zou ZQ, Liu CX, Liu XZ. 2014. Immunotherapeutic interventions in chronic hepatitis B virus infection: a review. Journal of immunological methods 407:1-8. 17. Bertoletti A, Ferrari C. 2003. Kinetics of the immune response during HBV and HCV infection. Hepatology 38:4-13. 18. Guidotti LG, Morris A, Mendez H, Koch R, Silverman RH, Williams BR, Chisari FV. 2002. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. Journal of virology 76:2617-2621. 19. Bertoletti A, Gehring AJ. 2006. The immune response during hepatitis B virus infection. The Journal of general virology 87:1439-1449. 20. Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. 2000. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 32:1117-1124. 21. Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Missale G, Ferrari C. 2009. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58:974-982. 22. Penna A, Del Prete G, Cavalli A, Bertoletti A, D'Elios MM, Sorrentino R, D'Amato M, Boni C, Pilli M, Fiaccadori F, Ferrari C. 1997. Predominant T-helper 1 cytokine profile of hepatitis B virus nucleocapsid-specific T cells in acute self-limited hepatitis B. Hepatology 25:1022-1027. 23. Asabe S, Wieland SF, Chattopadhyay PK, Roederer M, Engle RE, Purcell RH, Chisari FV. 2009. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. Journal of virology 83:9652-9662. 24. Guidotti LG, Chisari FV. 2006. Immunobiology and pathogenesis of viral hepatitis. Annual review of pathology 1:23-61. 25. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. 2003. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of virology 77:68-76. 26. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. 2009. Control of cccDNA function in hepatitis B virus infection. Journal of hepatology 51:581-592. 27. Sitia G, Isogawa M, Iannacone M, Campbell IL, Chisari FV, Guidotti LG. 2004. MMPs are required for recruitment of antigen-nonspecific mononuclear cells into the liver by CTLs. The Journal of clinical investigation 113:1158-1167. 28. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG. 2005. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nature medicine 11:1167-1169. 29. Bertoletti A, Ferrari C. 2012. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61:1754-1764. 30. Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, Robbins G, Phillips R, Klenerman P, Walker BD. 2000. Analysis of successful immune responses in persons infected with hepatitis C virus. The Journal of experimental medicine 191:1499-1512. 31. Rehermann B, Fowler P, Sidney J, Person J, Redeker A, Brown M, Moss B, Sette A, Chisari FV. 1995. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. The Journal of experimental medicine 181:1047-1058. 32. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH, Liang TJ, Alter H, Rehermann B. 2002. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 169:3447-3458. 33. Lo CM, Fung JT, Lau GK, Liu CL, Cheung ST, Lai CL, Fan ST, Wong J. 2003. Development of antibody to hepatitis B surface antigen after liver transplantation for chronic hepatitis B. Hepatology 37:36-43. 34. Dahmen U, Li J, Dirsch O, Gu YL, Polywka S, Doebel L, Shen K, Broelsch CE. 2003. Adoptive transfer of donor-derived immunity by liver transplantation: a potential avenue to prevent hepatitis B virus reinfection. Journal of viral hepatitis 10:31-36. 35. Luo Y, Lo CM, Cheung CK, Lau GK, Fan ST, Wong J. 2007. Identification of hepatitis B virus-specific lymphocytes in human liver grafts from HBV-immune donors. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 13:71-79. 36. Schumann A, Lindemann M, Valentin-Gamazo C, Lu M, Elmaagacli A, Dahmen U, Knop D, Broelsch CE, Grosse-Wilde H, Roggendorf M, Fiedler M. 2009. Adoptive immune transfer of hepatitis B virus specific immunity from immunized living liver donors to liver recipients. Transplantation 87:103-111. 37. Dervite I, Hober D, Morel P. 2001. Acute hepatitis B in a patient with antibodies to hepatitis B surface antigen who was receiving rituximab. The New England journal of medicine 344:68-69. 38. Westhoff TH, Jochimsen F, Schmittel A, Stoffler-Meilicke M, Schafer JH, Zidek W, Gerlich WH, Thiel E. 2003. Fatal hepatitis B virus reactivation by an escape mutant following rituximab therapy. Blood 102:1930. 39. Yeo W, Chan TC, Leung NW, Lam WY, Mo FK, Chu MT, Chan HL, Hui EP, Lei KI, Mok TS, Chan PK. 2009. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27:605-611. 40. Niscola P, Del Principe MI, Maurillo L, Venditti A, Buccisano F, Piccioni D, Amadori S, Del Poeta G. 2005. Fulminant B hepatitis in a surface antigen-negative patient with B-cell chronic lymphocytic leukaemia after rituximab therapy. Leukemia 19:1840-1841. 41. Kim SJ, Hsu C, Song YQ, Tay K, Hong XN, Cao J, Kim JS, Eom HS, Lee JH, Zhu J, Chang KM, Reksodiputro AH, Tan D, Goh YT, Lee J, Intragumtornchai T, Chng WJ, Cheng AL, Lim ST, Suh C, Kwong YL, Kim WS. 2013. Hepatitis B virus reactivation in B-cell lymphoma patients treated with rituximab: analysis from the Asia Lymphoma Study Group. European journal of cancer 49:3486-3496. 42. Maruyama T, McLachlan A, Iino S, Koike K, Kurokawa K, Milich DR. 1993. The serology of chronic hepatitis B infection revisited. The Journal of clinical investigation 91:2586-2595. 43. Bocher WO, Herzog-Hauff S, Herr W, Heermann K, Gerken G, Meyer Zum Buschenfelde KH, Lohr HF. 1996. Regulation of the neutralizing anti-hepatitis B surface (HBs) antibody response in vitro in HBs vaccine recipients and patients with acute or chronic hepatitis B virus (HBV) infection. Clinical and experimental immunology 105:52-58. 44. Dusheiko GM, Hoofnagle JH, Cooksley WG, James SP, Jones EA. 1983. Synthesis of antibodies to hepatitis B virus by cultured lymphocytes from chronic hepatitis B surface antigen carriers. The Journal of clinical investigation 71:1104-1113. 45. Oliviero B, Cerino A, Varchetta S, Paudice E, Pai S, Ludovisi S, Zaramella M, Michelone G, Pugnale P, Negro F, Barnaba V, Mondelli MU. 2011. Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections. Journal of hepatology 55:53-60. 46. Rajewsky K. 1996. Clonal selection and learning in the antibody system. Nature 381:751-758. 47. Allen CD, Okada T, Cyster JG. 2007. Germinal-center organization and cellular dynamics. Immunity 27:190-202. 48. LeBien TW, Tedder TF. 2008. B lymphocytes: how they develop and function. Blood 112:1570-1580. 49. Coffey F, Alabyev B, Manser T. 2009. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30:599-609. 50. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. 2009. Follicular helper T cells: lineage and location. Immunity 30:324-335. 51. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. 2007. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol 179:5099-5108. 52. Tarlinton DM, Smith KG. 2000. Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunology today 21:436-441. 53. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. The Journal of experimental medicine 207:353-363. 54. Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. The Journal of experimental medicine 207:365-378. 55. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D. 2000. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57-63. 56. Jin H, Carrio R, Yu A, Malek TR. 2004. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 173:657-665. 57. Spolski R, Leonard WJ. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57-79. 58. Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J, Marsland BJ, Oxenius A, Kopf M. 2009. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324:1576-1580. 59. Elsaesser H, Sauer K, Brooks DG. 2009. IL-21 is required to control chronic viral infection. Science 324:1569-1572. 60. Yi JS, Du M, Zajac AJ. 2009. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324:1572-1576. 61. Iannello A, Tremblay C, Routy JP, Boulassel MR, Toma E, Ahmad A. 2008. Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts. Viral immunology 21:385-388. 62. Iannello A, Boulassel MR, Samarani S, Debbeche O, Tremblay C, Toma E, Routy JP, Ahmad A. 2010. Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J Immunol 184:114-126. 63. Publicover J, Goodsell A, Nishimura S, Vilarinho S, Wang ZE, Avanesyan L, Spolski R, Leonard WJ, Cooper S, Baron JL. 2011. IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. The Journal of clinical investigation 121:1154-1162. 64. 羅語潔. 2013. 建立小鼠模式以探討慢性B型肝炎病毒引發的免疫反應. 65. McGrory WJ, Bautista DS, Graham FL. 1988. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163:614-617. 66. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ. 2005. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. The Journal of experimental medicine 201:139-148. 67. Glebe D, Lorenz H, Gerlich WH, Butler SD, Tochkov IA, Tennant BC, Cote P, Menne S. 2009. Correlation of virus and host response markers with circulating immune complexes during acute and chronic woodchuck hepatitis virus infection. Journal of virology 83:1579-1591. 68. Ganem D, Prince AM. 2004. Hepatitis B virus infection--natural history and clinical consequences. The New England journal of medicine 350:1118-1129. 69. Creighton WD, Lambert PH, Miescher PA. 1973. Detection of antibodies and soluble antigen-antibody complexes by precipitation with polyethylene glycol. J Immunol 111:1219-1227. 70. Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 29:621-663. 71. Brady J, Hayakawa Y, Smyth MJ, Nutt SL. 2004. IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048-2058. 72. Madalinski K, Burczynska B, Heermann KH, Uy A, Gerlich WH. 1991. Analysis of viral proteins in circulating immune complexes from chronic carriers of hepatitis B virus. Clinical and experimental immunology 84:493-500. 73. Madalinski K, Bragiel I. 1979. HBsAg immune complexes in the course of infection with hepatitis B virus. Clinical and experimental immunology 36:371-378. 74. Milich DR, McLachlan A. 1986. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234:1398-1401. 75. Liaw YF, Leung N, Kao JH, Piratvisuth T, Gane E, Han KH, Guan R, Lau GK, Locarnini S, Chronic Hepatitis BGWPotA-PAftSotL. 2008. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update. Hepatology international 2:263-283. 76. Milich DR, Sallberg M, Maruyama T. 1995. The humoral immune response in acute and chronic hepatitis B virus infection. Springer seminars in immunopathology 17:149-166. 77. Barnaba V, Franco A, Alberti A, Benvenuto R, Balsano F. 1990. Selective killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous antigen-specific T lymphocytes. Nature 345:258-260. 78. Chang JJ, Wightman F, Bartholomeusz A, Ayres A, Kent SJ, Sasadeusz J, Lewin SR. 2005. Reduced hepatitis B virus (HBV)-specific CD4+ T-cell responses in human immunodeficiency virus type 1-HBV-coinfected individuals receiving HBV-active antiretroviral therapy. Journal of virology 79:3038-3051. 79. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, King AS, Herberg J, Gilson R, Alisa A, Williams R, Vergani D, Naoumov NV, Ferrari C, Bertoletti A. 2000. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. The Journal of experimental medicine 191:1269-1280. 80. Moir S, Fauci AS. 2008. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. The Journal of allergy and clinical immunology 122:12-19; quiz 20-11. 81. Xu X, Shang Q, Chen X, Nie W, Zou Z, Huang A, Meng M, Jin L, Xu R, Zhang JY, Fu J, Wang L, Tang Z, Xie Y, Yang X, Zhang Z, Wang FS. 2015. Reversal of B-cell hyperactivation and functional impairment is associated with HBsAg seroconversion in chronic hepatitis B patients. Cellular & molecular immunology 12:309-316. 82. Publicover J, Gaggar A, Nishimura S, Van Horn CM, Goodsell A, Muench MO, Reinhardt RL, van Rooijen N, Wakil AE, Peters M, Cyster JG, Erle DJ, Rosenthal P, Cooper S, Baron JL. 2013. Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. The Journal of clinical investigation 123:3728-3739. 83. Rasheed MA, Latner DR, Aubert RD, Gourley T, Spolski R, Davis CW, Langley WA, Ha SJ, Ye L, Sarkar S, Kalia V, Konieczny BT, Leonard WJ, Ahmed R. 2013. Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. Journal of virology 87:7737-7746. 84. Li Y, Ma S, Tang L, Li Y, Wang W, Huang X, Lai Q, Zhang M, Sun J, Li CK, Abbott WG, Naoumov NV, Zhang Y, Hou J. 2013. Circulating chemokine (C-X-C Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen seroconversion through IL-21 in patients with chronic hepatitis B virus infection. Hepatology 58:1277-1286. 85. Ma SW, Huang X, Li YY, Tang LB, Sun XF, Jiang XT, Zhang YX, Sun J, Liu ZH, Abbott WG, Dong YH, Naoumov NV, Hou JL. 2012. High serum IL-21 levels after 12 weeks of antiviral therapy predict HBeAg seroconversion in chronic hepatitis B. Journal of hepatology 56:775-781. 86. Dong C. 2008. Regulation and pro-inflammatory function of interleukin-17 family cytokines. Immunological reviews 226:80-86. 87. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS. 2010. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51:81-91. 88. Hu X, Ma S, Huang X, Jiang X, Zhu X, Gao H, Xu M, Sun J, Abbott WG, Hou J. 2011. Interleukin-21 is upregulated in hepatitis B-related acute-on-chronic liver failure and associated with severity of liver disease. Journal of viral hepatitis 18:458-467. 89. Croce M, Rigo V, Ferrini S. 2015. IL-21: a pleiotropic cytokine with potential applications in oncology. Journal of immunology research 2015:696578. 90. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Moller P, Schrezenmeier H, Jahrsdorfer B. 2013. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer research 73:2468-2479. 91. Alves NL, Arosa FA, van Lier RA. 2005. IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 175:755-762. 92. Li Y, Bleakley M, Yee C. 2005. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175:2261-2269. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53569 | - |
| dc.description.abstract | 根據統計,全球大約有4億人口受到慢性B型肝炎病毒(Human hepatitis B virus, HBV)感染,且B型肝炎病毒感染會引起急性及慢性肝臟疾病,甚至進展為肝硬化及肝癌。臨床顯示,清除HBV病毒的能力與年紀有相關,感染大人,只有5 %會形成慢性感染,然而,感染新生兒90 %則會發展為慢性HBV感染,影響HBV感染走向急性或慢性感染,與宿主能否引發病毒專一性的細胞性免疫反應有關,然而,最終產生anti-HBs抗體是清除HBV的關鍵。慢性B型肝炎患者,血清中無法測得anti-HBs抗體;然而,越來越多臨床證據顯示,在慢性B型肝炎患者,可能還是會產生anti-HBs抗體,且有抑制HBV病毒的作用。因此,本論文第一部分主要探討B細胞在HBV感染時扮演的保護角色。
實驗使用腺相關病毒(Adeno-associated virus, AAV)載體,攜帶聚合酶缺陷B型肝炎病毒基因體(AAV/HBVp-),在小鼠肝臟表現HBV mRNA及相關蛋白,以模擬人類B型肝炎感染時,在肝臟產生抗原所引發的免疫反應相關機制。首先,我們用AAV/HBVp-感染不同品系3週齡的幼鼠及8-12週齡的成鼠,發現在感染早期,成鼠比幼鼠較能有效的清除HBsAg。然而,清除HBsAg的效果無法長期維持。進一步探討感染初期成鼠清除HBsAg的可能機制,首先利用免疫共沉澱方式分析感染後,不同時間點肝臟中HBsAg表現的情形,發現肝臟仍持續表現HBsAg,沒有減少。利用不同免疫缺陷小鼠進行實驗,證實只要沒有B細胞的存在,HBsAg就無法被清除;另外,我們也分析感染小鼠第三週,血清HBsAg表現下降時間點,是否有免疫複合物的產生。結果顯示HBV感染小鼠血清中都有偵測到HBs-anti-HBs複合物的存在,證實HBV的感染會產生anti-HBs抗體,只是與血清中的HBsAg結合,以免疫複合物形式存在。 從第一部分的結果,我們提出一個假說,HBV感染早期引發的anti-HBs抗體的量,會影響HBV感染的病程。在急性感染病人,產生的anti-HBs量較高,可達到完全清除病毒的目的,痊癒後血液中可以測到anti-HBs抗體。而慢性感染病人,可能因為感染初期產生的anti-HBs量較低,無法有效清除病毒,因此造成慢性感染。B細胞抗體反應需要T follicular helper cell (Tfh)T細胞的幫忙,Tfh會進入二級淋巴器官的Germinal center (GC)與B細胞進行交互作用。其中Tfh細胞表現的IL-21,對GC B細胞分化成漿細胞(plasma cell)的過程、以及維持GC的反應很重要。因此本論文第二部分探討,以IL-21治療早期HBV感染,以及治療已形成慢性B型肝炎感染,對清除病毒的影響。 我們發現以IL-21治療早期感染的小鼠,能夠有效清除血清中HBsAg及HBeAg,長達一年,甚至在成鼠的治療可測到anti-HBs抗體的存在。以IL-21治療慢性B型肝炎小鼠,也能觀察到有效清除血清HBV抗原,特別是HBeAg有持續下降的現象。利用免疫組織染色和北方墨點法,證實IL-21治療,也能有效清除肝臟中的HBV。但IL-21清除HBV的機制和B細胞無關,因為治療B細胞基因剔除小鼠也會造成血清HBsAg的下降。流式細胞分析顯示,IL-21治療會造成肝臟免疫細胞大量增加,同時也有CD8+T細胞的活化及GC B細胞增加的現象。然而,脾臟免疫細胞則沒有顯著影響。 本篇研究發現,慢性B型肝炎病毒感染,會產生anti-HBs抗體,只是在帶原者與HBsAg結合,形成免疫複合物。另外,以IL-21治療HBV,能夠透過活化肝臟免疫反應,達到有效且長期清除HBV病毒的目的。 | zh_TW |
| dc.description.abstract | Hepatitis B virus (HBV) infects approximately 400 million people and can lead to the development of severe liver disease. The chance of clearing HBV infection is age dependent. Only 5% of adult-acquired infections lead to chronic infection, whereas more than 90% of exposed neonates will develop chronic diseases. Current evidence suggests that virus specific CD4+ and CD8+ T cell responses play a central role in the outcome and pathogenesis of HBV; whereas antibodies to HBsAg might be the key to HBV clearance. It is know that in chronic HBV patients anti-HBs antibody is not present in the circulation. However, there is growing evidence suggest that anti-HBs antibody might still be produced in chronic HBV, and play a role in suppressing viruses. Therefore, in the first part of the study, we investigated the role of B cell in HBV infection.
We used recombinant adeno-associated viral vectors to deliver a HBV genome carrying mutations in the polymerase gene (AAV/HBVp-) and thus not being able to replicate, but otherwise normal in protein and mRNA production. Our results showed that adult mice (8-to 12-week-old) were more effective than young mice (3-week-old) in clearing serum HBsAg in early infection, but the suppressive effect did not persist. Immunoprecipitation analysis revealed that HBsAg expression in the liver was not reduced. Infection of AAV/HBVp- in different immunodeficiency mouse strains, showed that B cells play a critical role in reducing serum HBsAg in early infection. Moreover, HBsAg-containing immune complexes can be identified in the serum of mice at the time of HBsAg decrease. Together, these result that anti-HBs antibodies are present in the excess of HBsAg in the form of immune complex with HBsAg. We hypothesize that the level of anti-HBsAb in early infection may influence the outcome of HBV infection, for those who produce low level of anti-HBs antibody fail in clearance of HBV and eventually develop chronic HBV disease. The generation of Ab-forming cells occurs during a germinal center (GC) reaction, in which T follicular helper T cells (Tfh) cells are essential for GC formation. Interleukin-21 (IL-21) is the most critical Tfh-derived stimulator for differentiation GC B cells into memory B cells or plasma cells, which together sustain long-term humoral immunity. In the second part of the study, I addressed whether IL-21 treatment can promote HBV clearance in early infection and in persistent infection. IL-21 treatment in early infection significantly reduced all viral proteins in the serum and the suppressive response last for at least one year, resulting in appearance of anti-HBs antibody in most adult mice. Even in mice with established chronic HBV infection, IL-21 treatment still significantly decreased all HBV proteins, in particular the HBeAg, for at least one year. Immunohistologic staining and northern blot analysis of the liver tissue from IL-21 treated mice showed significantly reduction of HBV core protein and mRNAs in liver. However, mechanistic studies revealed that the anti-HBV effect of IL-21 was not related to anti-HBV antibodies since the therapeutic effect of IL-21 maintained in B cell-deficient μMT-/- mice. Flow cytometry analysis showed a significant increase in the absolute number of several lymphocyte subpopulations in the liver, and among them CD8+T cells showed increased activation phenotypes. The percentage of GC B cells in liver, but no in spleen, was also significantly increased. Together, this study showed evidence that anti-HBs antibody was present in the form of immune complexes in mice that eventually developed chronic infection, and IL-21 treatment was effective in controlling chronic HBV infection by inducing anti-HBV immune responses in the liver. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:25:50Z (GMT). No. of bitstreams: 1 ntu-104-R02424025-1.pdf: 5754236 bytes, checksum: 5f96cd960ebf5838b84e3ceb5aae3715 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 致謝 v 目錄 vi 圖目錄 x 第一章、緒論 1 第一節、B型肝炎病毒 (HBV) 1 1.1 B型肝炎病毒 1 1.2 B型肝炎免疫反應 3 第二節、B細胞免疫反應 5 2.1 B淋巴細胞的發育及成熟 6 2.2 Germinal centeral (GC)反應 6 第三節、介白素-21(IL-21) 6 3.1 IL-21抗病毒能力 7 第四節、實驗目的與設計 7 第二章、實驗方法與材料 9 1. 腺相關病毒攜帶HBV聚合酶點突變之病毒 (AAV/HBVp-)製備 9 1.1 pAAV/HBVp-質體建立 9 1.2 重組腺相關病毒製備 9 1.3 病毒純化 10 1.4 病毒定量 10 2. IL-21的腺病毒載體製備 10 2.1 重組腺病毒載體IL-21(Ad/IL-21)置備 10 2.2 IL-21活性分析 11 2.3 大量生產Ad/IL-21及純化 11 2.4 Ad/IL-21定量 12 3. 實驗小鼠 12 4. 病毒感染小鼠方式 12 5. 淋巴球細胞分離 13 5.1 肝臟淋巴球細胞分離 13 5.2 脾臟淋巴球細胞分離 13 6. 流式細胞儀分析 13 7. 免疫複合物 ( Immune complex )分析 14 8. 免疫共沉澱 ( Immunoprecipitation) 14 9. 西方墨點法 15 10. 分析肝臟HBV RNA表現 15 10.1 RNA萃取 15 10.2 RNA quality確認 16 10.3 製備HBV DNA probe 16 10.4 北方墨點法 17 11. 免疫化學組織染色 17 12. HBV血清和生化標誌分析 18 13. 統計 18 第三章、實驗結果 19 第一節、建立HBV小鼠動物模式 19 第二節、HBV與年紀關係 20 2.1 AAV/HBVp-感染成鼠比感染幼鼠更容易被清除 20 2.2 成鼠清除HBV的能力無法長期維持 21 第三節、探討AAV/HBVp-感染成鼠,造成血清HBsAg表現量下降機制 22 3.1 肝臟HBsAg表現量沒有減少 22 3.2 AAV/HBp-感染缺乏B細胞的μMT-/-小鼠,喪失清除血清HBsAg的能力 23 第四節、在HBV感染是否能引發B細胞的抗體反應 24 4.1 免疫複合物分析方法的建立 24 4.2 免疫複合物分析方法的靈敏度 25 4.3 在AAV/HBVp-感染後小鼠血清中有免疫複合物存在 26 第五節、IL-21對B型肝炎病毒清除的影響 27 5.1 構築表現IL-21的腺病毒載體 (Ad/IL-21)及IL-21功能確認 27 5.2 感染早期以IL-21治療能幫助清除HBV 29 5.3 慢性B型肝炎以IL-21治療,也能有效清除HBV 30 5.4 IL-21治療HBV能夠清除肝臟中的HBV 33 第六節、探討影響IL-21治療治療效果的機制 34 6.1 IL-21清除HBV的效果與B細胞無關 34 6.2 IL-21治療HBV感染成鼠初期,一週後能夠刺激肝臟T細胞的活化,但對脾臟免疫細胞則沒有影響 36 6.3 IL-21治療第三週肝臟及脾臟中T細胞及B細胞數目仍有增加,但T細胞活化程度降低,GC B細胞比例也減少 40 第四章、討論 44 1. 慢性B型肝炎感染,anti-HBs抗體的產生 44 2. 對清除HBeAg沒有影響的原因 44 3. 慢性B型肝炎沒有偵測到free anti-HBs抗體的原因 45 4. B細胞在其他慢性感染所扮演角色 45 5. IL-21清除病毒的機制 46 6. IL-21能夠有效清除HBeAg 46 7. IL-21的治療造成ALT升高 47 8. IL-21引發Regulatory B細胞的反應 47 9. IL-21對CD8+T細胞活化的影響 48 第五章、參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | Germinal center B細胞 | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | B淋巴細胞 | zh_TW |
| dc.subject | HBs-anti-HBs免疫複合物 | zh_TW |
| dc.subject | 介白素-21 | zh_TW |
| dc.subject | Hepatitis B virus | en |
| dc.subject | Germinal center B cells | en |
| dc.subject | Interleukin-21 | en |
| dc.subject | HBs-anti-HBs Immune complex | en |
| dc.subject | B Lymphocytes | en |
| dc.title | 介白素-21預防慢性B型肝炎病毒的感染:B淋巴細胞所扮演角色 | zh_TW |
| dc.title | IL-21 Prevents the Establishment of Chronic Hepatitis B Virus Infection: The Role of B Lymphocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雅倩,莊雅惠,楊宏志 | |
| dc.subject.keyword | B型肝炎病毒,B淋巴細胞,HBs-anti-HBs免疫複合物,介白素-21,Germinal center B細胞, | zh_TW |
| dc.subject.keyword | Hepatitis B virus,B Lymphocytes,HBs-anti-HBs Immune complex,Interleukin-21,Germinal center B cells, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
