請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53216
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹森(Sen Jan) | |
dc.contributor.author | Vigan Mensah | en |
dc.contributor.author | 孟偉安 | zh_TW |
dc.date.accessioned | 2021-06-15T16:51:33Z | - |
dc.date.available | 2016-01-01 | |
dc.date.copyright | 2015-08-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-06 | |
dc.identifier.citation | Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41(11), 2211–2222.
Centurioni, L. R., P. P. Niiler, and D. K. Lee, 2004: Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113- 121. Chang, M.-H., T. Y. Tang, C.-R. Ho, and S.-Y. Chao, 2013: Kuroshio-induced wake in the lee of Green Island off Taiwan, J. Geophys. Res. Oceans, 118, 1508–1519,doi:10.1002/jgrc.20151. Chen C. T. A. (1988) Exchange of water masses between the East China Sea and the Black Stream: a proposed descriptive chemical oceanographic study. Extended Abstract of the Workshop on Kuroshio Edge Exchange Processes, Stony Brook, N.Y., May 4-6 1988, pp. 6.1~6.6 Chen, C. T. A., 2005: Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. J. Geophys. Res., 110, C05012, doi:10.1029/2004JC002494. Chen, C. T. A. and M.-H. Huang, 1996: A Mid-depth front separating the South China Sea Water and the Philippine Sea Water. J. Oceanogr., 52, 17-25. Chen, C. T. A., and S. L. Wang (1998), Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea, J. Geophys. Res., 103, 12,683–12,688. Chern, C.-S. and J. Wang, 1998: The spreading of South China Sea water to the east of Taiwan during summertime. Acta Oceanogr. Taiwanica, 32, 97-109. Chern, C.-S., S. Jan, and J. Wang, 2010: Numerical study of mean flow patterns in the South China Sea and the Luzon Strait. Ocean Dyn., 60, 5, 1047-1059. doi: 10.1007/s10236-010-0305-3. Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 1535-1555. Farris, A., and M. Wimbush, 1996: Wind-induced intrusion into the South China Sea. J. Oceanogr., 52, 771–784. Freeland, HJ., 2013: Vertical velocity estimates in the North Pacific using Argo floats. Deep-Sea Res. II, 85, 75–80 Gilson, J., and D. Roemmich, 2002: Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993–2001). J. Oceanogr., 58, 183–195. Gordon, A. L., P. Flament, C. Villanoy, and L. Centurioni, 2014: The nascent Kuroshio of Lamon Bay, J. Geophys. Res. Oceans, 119, 4251-4263, doi:10.1002/2014JC009882. Hsin, Y.-C., T. Qu, and C.-R. Wu, 2010: Intra-seasonal Variation of the Kuroshio southeast of Taiwan and its possible forcing mechanism. Ocean Dynamics, 60, 1293-1306. Jan, S., C.-S. Chern, and J. Wang, 2002: Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. J. Oceanogr., 58, 837-850. Jan, S., D. D. Sheu, and H.-M. Kuo, 2006: Water mass and throughflow transport variability in the Taiwan Strait, J. Geophys. Res., 111, C12012, doi:10.1029/2006JC003656. Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 5, 789-802. Jan, S., Y. J. Yang, J. Wang, V. Mensah, T.-H. Kuo, M.-D. Chiou, C.-S. Chern, M.-H. Chang, and H. Chien, 2015: Large variability of the Kuroshio at 23.75°N east of Taiwan. J. Geophys. Res., 120, doi:10.1002/2014JC010614. Johns WE, Lee TN, Zhang D, Zantopp R, Liu C-T, Yang Y, 2001: The Kuroshio east of Taiwan: moored transport observations from the WOCE PCM-1 array. J. Phys. Oceangr., 31,1031–1053. Johnson, D.R., T.P. Boyer, H.E. Garcia, R.A. Locarnini, O.K. Baranova, and M.M. Zweng, 2013: World Ocean Database 2013 User’s Manual. Sydney Levitus, Ed.; Alexey Mishonov, Technical Ed.; NODC Internal Report 22, NOAA Printing Office, Silver Spring, MD, 172 pp. Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626–629. Kuo, Y.-C. and C.-S. Chern, 2011: Numerical study on the interactions between a mesoscale eddy and a western boundary current. J. Oceanogr., 67, 263-272. Kwon, Y-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: A review. J. Climate, 23, 3249-3281. Ledwell, J.R.,Watson,A.J.,Law,C.S.,1998: Mixing of a tracer released in the pycnocline of a subtropical gyre. J.Geophys.Res.103(21),499–521529. Liang, W.-D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W.-S. Chuang, 2003: Upper-ocean currents around Taiwan. Deep-Sea Res, Part II, 50, 1085-1105. Lien, R.-C., B. Ma, Y.-H. Cheng, C.-R. Ho, B. Qiu, C. M. Lee, and M.-H. Chang, 2014: Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans, 119, 2129–2142, doi:10.1002/2013JC009548. Meinen, C. S., and D. R. Watts, 2000, Vertical structure and transport on a transect across the North Atlantic Current near 428N. J. Geophys. Res., 105, 21 869–21 891 Mensah, V., S. Jan, M.-D. Chiou, T.-H. Kuo, and R.-C. Lien, 2014: Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep-Sea Res., Part I, 86, 68-81, http://dx.doi.org/10.1016/j.dsr.2014.01.005. Nakamura, H., A. Nishina, Z. Liu, F. Tanaka, M. Wimbush, and J.-H. Park, 2013: Intermediate and deep water formation in the Okinawa Trough. J. Geophys. Res. Oceans, 118, 6881-6893, doi: 10.1002/2013JC009326 Nitani, H., 1972: Beginning of the Kuroshio, in Kuroshio: Its Physical Aspects, edited by H. Stommel and K. Yoshida, pp. 129–163., Univ. of Tokyo Press, Tokyo. Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923. Oey, L-Y, 1996: Simulation of Mesoscale Variability in the Gulf of Mexico: Sensitivity Studies, Comparison with Observations, and Trapped Wave Propagation. J. Phys. Oceanogr., 26, 145–175. Olbers, D., Wenzel M.J., Willebrand J., 1985: The inference of North Atlantic circulation patterns from climatological hydrographic data. Rev. Geophys. 23:313–56 Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12315-12330,. Qiu, B., and S. Chen, 2005: Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo, TMI, and Altimetry Measurements. J. Phys. Oceanogr., 35, 458–473, doi: http://dx.doi.org/10.1175/JPO2696.1 Qiu, B., S. Chen, 2010: Interannual Variability of the North Pacific Subtropical Countercurrent and Its Associated Mesoscale Eddy Field. J. Phys. Oceanogr., 40, 213–225. Qu, T., T. Kagimoto, and T. Yamagata, 1997: A subsurface countercurrent along the east coast of Luzon. Deep Sea Res., Part I, 44, 413–423, doi:10.1016/S0967-0637(96)00121-5. Qu, T., H. Mitsudera, and T. Yamagata, 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res., 105, 6415-6424. Qu, T., and R. Lukas, 2003: The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33, 5–18. Qu, T., Y.Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait Transport play a role in conveying the impact of ENSO to the South China Sea. J. Climate., 17, 3644-3657. Rudnick, L. D., S. Jan, L. Centurioni, C. Lee, R.-C. Lien, J. Wang, D. K. Lee, R.-S. Tseng, Y. Y. Kim, C.-S. Chern, 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24, 4, 52–63, http://dx.doi.org/10.5670/oceanog.2011.94. Sheremet, V.-A., 2001: Hysteresis of a Western Boundary Current Leaping across a Gap*. J. Phys. Oceanogr., 31, 1247–1259. doi: http://dx.doi.org/10.1175/1520-0485(2001)031%3c1247:HOAWBC%3e2.0.CO;2 Simmons, H., M.-H. Chang, Y-T. Chang, S.-Y. Chao, O. Fringer, C.R. Jackson, D.-S. Ko, 2011: Modeling and prediction of internal waves in the South China Sea. Oceanography, 24(4):88-99, http://dx.doi.org/10.5670/oceanog.2011.97. Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev.,91, 99–164. Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and S. A. Orszag, Eds.Cambridge University Press, 3–36. Su, J., B. Guan and J. Jiang, 1990: The Kuroshio. Part I. Physical features. Oceanography and Marine Biology Annual Review,28, 11–71. Sun, C., and D. R. Watts, 2001: A circumpolar gravest empirical mode for the Southern Ocean hydrography, J. Geophys. Res., 106(C2), 2833 – 2855. Talley, L. D., 1993: Distribution and formation of North Pacific Intermediate Water. J. Phys. Oceanogr., 23, 517–537. Talley, L. D., J.-Y. Yun, 2001: The role of cabbeling and double diffusion in setting the density of the North Pacific Intermediate Water salinity minimum. J. Phys. Oceanogr., 31, 1538–1549. Tian, J., Q. Yang, W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea, J. Phys. Oceanogr., 39, 3191–3203, doi:10.1175/2009JPO3899.1. Toole, J. M., R. C. Millard, Z. Wang, and S. Pu, 1990: Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. J. Phys. Oceanogr., 20, 307–318. Wang, F., N. Zang, Y. Li, and D. Hu, 2015: On the subsurface countercurrents in the Philippine Sea. J. Geophys. Res. Oceans, 120, doi:10.1002/2013JC009690. Wang, J. and C.-S. Chern (1987): The warm core eddy in the northern South China Sea, II. A simple mechanism for the establishment and development of the warm-core eddy. Acta Oceanographica Taiwanica,18, 104–113. Watts, D. R., C. Sun and S. Rintoul, 2001: Two-dimensional gravest empirical modes determined form hydrographic observations in the Subantarctic Front. J. Phys. Oceanogr., 31, 2186–2209. Wyrtki, K., 1961: Physical oceanography of the southeast Asian waters, Naga Rep. 2, 195 pp., Scripps Inst. of Oceanogr., Jolla, Calif. Yasuda, I., 1997: The origin of the North Pacific Intermediate Water. J. Geophys. Res. Oceans, 102, 893-909. Yang, Y., C.-T. Liu, J.-H. Hu, and M. Koga, 1999: Taiwan Current (Kuroshio) and impinging eddies. J. Oceanogr., 55, 609-617. You, Y., 2003: The pathway and circulation of North Pacific Intermediate Water. Geophys. Res. Lett., 30, doi:10.1029/2003GL018561. You, Y., C.-S. Chern, Y. Yang, C.-T. Liu, K.-K. Liu, S.-C. Pai, 2005: The South China Sea, a cul-de-sac of North Pacific Intermediate Water. J. Oceanogr., 61, 509-527. Zhang, D., T. N. Lee, W. E. Johns, C. T. Liu and R. Zantopp, 2001: The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. J. Phys. Oceanogr., 31, 1054–1074. Zheng, Q., H. Lin, J. Meng, X. Hu, T. Song, Y. Zhang and C. Li, 2008: Sub-mesoscale ocean vortex trains in the Luzon strait. J. Geophys. Res.113, C04032. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53216 | - |
dc.description.abstract | The variability of the water masses associated with the Kuroshio are analyzed through three separate studies: (1) The spatial variations of the Kuroshio Tropical Water (KTW) from the Luzon Strait to the east of Taiwan is studied from climatology data; (2) the temporal variability of the intermediate water (IW) east of Taiwan is elucidated through the use of two years of salinity minimum time series; (3) hydrographic and current velocity data collected from 9 surveys east of Taiwan are used to supplement the results from the previous two studies.
The first study examines the evolution of KTW from the Luzon Strait to the I-Lan Ridge northeast of Taiwan. Historical conductivity temperature depth (CTD) profiles are analyzed based on root mean square (rms) difference of the salinity along isopycnals. This analysis enables water masses in the Kuroshio and the vicinity, as well as their interactions, to be tracked and distinguished. Vertical and horizontal eddy diffusivities are then calculated from hydrographic and current velocity data to elucidate the dynamics underlying the KTW interactions with the surrounding water masses. Changes in KTW properties mainly occur in the southern half of the Luzon Strait, while moderate variations are observed east of Taiwan on the eastern flank of the Kuroshio. A front separating the KTW from the South China Sea Tropical Water (SCSTW) on the Kuroshio western side, is observed east of Taiwan. The estimated horizontal eddy diffusivity is high (Kh~102 m2 s-1) all along the Kuroshio path, due to the high lateral current shear along the Kuroshio flanks. The vertical diffusivity is the dominant factor responsible for the modification of KTW in the Luzon Strait and approaches 10-3 m2 s-1, with the highest value in the southern Luzon Strait. The variability of the IW east of Luzon and Taiwan is investigated using data acquired from moored instrumented lines and shipboard hydrographic and current velocity surveys. The IW is defined as the water mass with a local salinity minimum along the Kuroshio path. An empirical formula is deduced to estimate the IW salinity minimum east of Taiwan using temperature measurements around 580 m depth. The properties of the IW east of Taiwan vary greatly as a result of variable contributions from three water masses including the high salinity South China Sea Intermediate Water (SCSIW), the low salinity minimum North Pacific Intermediate Water (NPIW), and the mid-range Kuroshio Intermediate Water (KIW). Our analysis concludes that NPIW is predominantly found east of Taiwan and the northward transport of KIW from east of Luzon to east of Taiwan is not a steady process. Concurrent mooring and Pressure-sensor equipped Inverted Echo Sounder (PIES) measurements east of Luzon and Taiwan allow us to correlate the variations of the layer thickness of the Kuroshio near its origin (KLTo) east of Luzon to the nature of the IW east of Taiwan. Variations of KLTo are linked to the mesoscale eddies impinging on the Kuroshio, from the analysis of PIES data. When the Kuroshio is deep (large KLTo) KIW is transported northward across the Luzon Strait, where the KIW salinity increases presumably due to turbulence mixing, and to the east of Taiwan. When the Kuroshio is shallow (small KLTo) the KIW transport east of Luzon is diminished or southward. East of Taiwan, NPIW feeds in below the Kuroshio and is transported northward beyond the I-Lan Ridge. To further document the variability of the tropical and intermediate waters, we use the results from 9 cruises along the KTV1 line east of Taiwan, together with satellite sea surface height data. The investigation reveals that the flow of South China Sea Tropical Water (SCSTW) to the west of Kuroshio is not permanent, and the offshore shift of the Kuroshio axis strongly impacts the flow and characteristics of the water masses found in the region. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:51:33Z (GMT). No. of bitstreams: 1 ntu-104-D00241101-1.pdf: 6898817 bytes, checksum: 21167e8fb1e7f9fbd1032ddb90b106a9 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | List of Figures...........................................................................................................................v
List of Tables...........................................................................................................................xi Chapter 1 Introduction......................................................................................................................1 Chapter 2 Data and Methodology...........................................................................................7 2.1 Tropical Water............................................................................................................................8 2.1.1 Datasets................................................................................................................................8 2.1.2 Water mass analysis..........................................................................................................10 2.1.3 Definition of water masses and reference θ-S curves.....................................................12 2.2 Intermediate Water..................................................................................................................16 2.2.1 Hydrographic and current velocity surveys...................................................................17 2.2.2 Synthetic Smin time series..................................................................................................19 2.2.3 Impact of the variability of the Kuroshio origin on water masses east of Taiwan......28 2.3 Impact of the local circulation east of Taiwan on Kuroshio water masses 2.3.1 Surveys and satellite sea surface height .........................................................................33 Chapter 3 Evolution of the tropical waters................................................................................34 3.1 Root mean square analysis.......................................................................................................34 3.2 Seasonal patterns of tropical waters........................................................................................42 3.3 Eddy diffusivity of the tropical water.....................................................................................44 3.3.1 Estimate of diffusivities.....................................................................................................45 3.3.2 Horizontal diffusivities......................................................................................................48 3.3.3 Vertical diffusivities..........................................................................................................51 3.4 Summary....................................................................................................................................55 Chapter 4 Variability of the intermediate waters.....................................................................58 4.1 Time series analysis...................................................................................................................58 4.2 Qualitative analysis of the intermediate water volume transport........................................60 4.3 The relationship between Kuroshio thickness and the intermediate water.........................65 4.3.1 The notion of Kuroshio layer thickness..........................................................................65 4.3.2 Variations of the KLT and its impact on the intermediate water flow........................70 4.3.3 Local impact of SSHa systems interacting with the Kuroshio east of Taiwan.........................................................................................................................................73 4.3.4 Remote impact of eddies impinging on the Kuroshio east of Luzon............................75 4.3.5 Seasonal variability of the intermediate water circulation...........................................79 4.4 Summary....................................................................................................................................81 Chapter 5 Effects of large scale and mesoscale circulation on the Kuroshio water masses..................................................................................................................................................84 5.1Impact of local circulation east of Taiwan on Kuroshio water masses.................................84 5.1.1 On the permanence of a northward flow of SCSTW east of Taiwan...........................85 5.1.2 High frequency (< intraseasonal) variability of the tropical waters across the Kuroshio front............................................................................................................................89 5.1.3 Circulation of the intermediate water in the vicinity of the I-Lan ridge.....................92 Chapter 6 Conclusion and suggestions........................................................................................94 References...........................................................................................................................................99 | |
dc.language.iso | en | |
dc.title | 呂宋海峽到台灣東部海域黑潮水團演化之動力過程研究 | zh_TW |
dc.title | Evolution of the water masses associated with the Kuroshio from the Luzon Strait to the east of Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾若玄(Ruo-Shan Tseng),陳仲吉(Chung-Chi Chen),周文臣(Wen-Chen Chou),陳慶生(Ching-Sheng Chern),王冑(Joe Wang) | |
dc.subject.keyword | 黑潮,水團,流量,變動,混合,平流, | zh_TW |
dc.subject.keyword | Kuroshio,Water masses,Transport,Variability,Mixing,Advection, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。