請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張俊彥 (Chun -Yen Chang) | |
| dc.contributor.author | Chun-Ying Shih | en |
| dc.contributor.author | 施均穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:51:03Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 書籍 1. 呂以寧和林炳行(譯)(民88)。景觀設計概論(原作者:J. L. Motloch)。台北市:六合出版社。(原著出版年:1991) 2. Arnheim, R. (1969). Visual Thinking 2nd edition. California, USA: University of California Press. 3. Laseau, P. (2000). Graphic Thinking for Architects and Designers 3nd edition. Canada: John Wiley Sons. 4. Lawson, B. (1994). Design in mind. Oxford, England: Butterworth Architecture. 5. Mckim, R.H. (1972). Experiences in Visual Thinking. California, USA: Brooks-Cole. 6. Goel, V. (1995). Sketches of Thought. Cambridge, MA: the MIT Press. 期刊 1. 王怡茹(2017)。以功能性磁振造影探討景觀設計的腦區與心流體驗之關係。臺灣大學園藝計景觀學系學位論文。 2. 蔡宇平(2015)。以功能性磁振造影分析景觀設計創造力之腦區反應。臺灣大學園藝計景觀學系學位論文。 3. 葉昱辰(2018)。設計階段與設計思考之腦區反應。臺灣大學園藝計景觀學系學位論文。 4. Abraham, A. (2016). The Imaginative Mind, Human Brain Mapping, 37, 4197-4211. 5. Alexandre M. Lawson, B. (2006). How designers perceive sketches. Design Studies, 27(5), 571-585. 6. Anderson, R. E. Helstrup, T. (1993). Visual Discovery in Mind and on Paper. Memory Cognition, 21(3), 283-293. 7. Arden, R., Chavez, R. S., Grazioplene, R. Jung, R. E.(2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214(2), 143-156. 8. Aziz-Zadeh, L., Kaplan, J. T. Iacoboni, M. (2009). 'Aha!': The Neural Correlates of Verbal Insight Solutions. Human Brain Mapping, 30(3), 908-916. 9. Aziz-Zadeh, L., Liew, S.-L. Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 8, 475-480. 10. Barbey, A. K., Koenigs, M. Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205. 11. Bar-Eli, S. (2013). Sketching profiles: Awareness to individual differences in sketching as a means of enhancing design solution development. Design Studies, 34(4), 472-493. 12. Basadur, M., Graen, G. B. Green, S. G. (1982). Training in Creative Problem Solving: Effects on Ideation and Problem Finding and Solving in an Industrial Research Organization. Organizational Behavior and Human Performance, 30(1), 41-70. 13. Beaty, R. E., Benedek, M., Kaufman, S. B. Silvia, P. J. (2015a). Default and Executive Network Coupling Supports Creative Idea Production. Scientific Reports, 5, 1-14. 14. Beaty, R. E. (2015b). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51, 108-117. 15. Beaty, R. E., Benedek, M., Silvia, P. J. Schacter, D. L. (2016). Creative Cognition and Brain Network Dynamics. Trends in Cognitive Science, 20(2), 87-95. 16. Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., Kane, M. J. Silvia, P. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 115(5), 1087-1092. 17. Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F. Neubauer, A. C. (2013). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neuroimage, 88, 125-133. 18. Benedek, M., Christensen, A. P., Fink A. Beaty R. E.(2019). Creativity Assessment in Neuroscience Research. Psychology of Aesthetics Creativity and the Arts,13(2),218-226. 19. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. Olson, I. R. (2007). Parietal lobe and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27(52), 14415-14423. 20. Bilda, Z., Gero, J. S. and Purcell, A. T. (2006). To sketch or not to sketch: that is the question. Design Studies, 275, 587-613. 21. Bilda, Z. Gero, J. S. (2007). The impact of working memory limitations on the design process during conceptualization. Design Studies, 28(4), 343-367. 22. Boccia, M., Piccardi, L., Palermo, L., Nori, R. Palmiero, M.(2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domainspecific creativity. Frontiers in Psychology, 6,1-12. 23. Buckner, R. L. (2013). The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron, 80(3), 807-815. 24. Cabeza, R., Ciaramelli, E., Olson, I. R. Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 9(8), 613-625. 25. Chai, K. H. Xiao, X. (2011). Understanding design research: A bibliometric analysis of Design Studies (1996-2010). Design Studies, 33(1), 24-43. 26. Dassonville, P., Lewis, S. M., Zhu, X. H., Ugurbil, K., Kim, S. G. Ashe, J. (2001). The effect of stimulus-response compatibility on cortical motor activation. Neuroimage,13(1), 1-14. 27. de Aquino, M. P. B., Verdejo-Roman, J., Perez-Garcia, M. Perez-Garcia, P. (2019). Different role of the supplementary motor area and the insula between musicians and non-musicians in a controlled musical creativity task. Scientific Reports, 9, 1-13. 28. Dietrich A. (2004), The cognitive neuroscience of creativity, Psychonomic Bulletin Review , 11 (6), 1011-1026. 29. Dietrich A. Kanso R. (2010), A Review of EEG, ERP, and Neuroimaging Studies of Creativity and Insight, Psychological Bulletin, 136(5), 822-848. 30. Dietrich A. (2019), Types of creativity, Psychonomic Bulletin Review, 26, 1-12. 31. Eckert, C., Blackwell, A., Stacey, M., Earl, C. Church, L. (2012). Sketching across design domains: Roles and formalities. Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 26(3), 245-266. 32. Ellamil, M., Dobson, C., Beeman, M., Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 1783-1794. 33. Fish, J. (2004). Cognitive Catalysis: Sketches for a Time-lagged Brain. In: Goldschmidt G. Porter W. L. (ed.) Design Representation, 151-184. 34. Friederici, A. D. (2015). White-matter pathways for speech and language processing. Handbook of Clinical Neurology, 129, 177-186. 35. Fuster, J. M. (2001). The prefrontal cortex - An update: time is of the essence. Neuron, 30(2), 319-333. 36. Gilbert, S. J., Zamenopoulos, T., Alexiou, K. Johnson, J. H. (2010). Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: an fMRI study. Brain Research, 1312, 79-88. 37. Goel, V. (2014). Creative brains: designing in the real world. Front Hum Neurosci, 8(241), 1-14. 38. Goldschmidt, G. (1991). The dialectics of sketching. Creativity Research Journal, 4(2), 123-143. 39. Goldschmidt, G. (1994). On visual design thinking: the vis kids of architecture, Design Studies.15(2), 158-174. 40. Gross, C. G. (1994) How inferior temporal cortex became a visual area. Cerebral Cortex, 4(5), 455-469. 41. Hampshire, A. Owen, A. M. (2006). Fractionating attentional control using event-related fMRI Cerebral Cortex. 16(12), 1679-1689. 42. Hay, L.; Duffy, A. H. B.; McTeague, C.; Pidgeon2, L, M.; Vuletic, T. Grealy, M.(2017). Towards a shared ontology: A generic classification of cognitive processes in conceptual design. Cambridge University Press, 1-42. 43. Iidaka, T., Yamashita, K., Kashikura, K. Yonekura, Y. (2004). Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI. Cognitive Brain Research, 18(2), 196-204. 44. Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S. Yamamoto, M. (2009). Neural Networks Involved in Artistic Creativity. Human Brain Mapping. 30,1678-1690. 45. Li et al., Li, W., Qin, W., Liu, H. G., Fan, L. Z., Wang, J. J., Jiang, T. Z. Yu, C. S. (2013). Subregions of the human superior frontal gyrus and their connections. Neuroimage, 78, 46-58. 46. MacDonald, A. W., Cohen, J. D., Stenger, V. A. Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 288, 1835-1838. 47. Machielsen, W. C. M., Rombouts, S., Barkhof, F., Scheltens, P. Witter, M. P. (2000). fMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9(3), 156-164. 48. Nachev, P., Rees, G., Parton, A., Kennard, C. Husain, M. (2005). Volition and conflict in human medial frontal cortex. Current Biology, 15(2), 122-128. 49. Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H. Shibasaki, H. (2004). The neural basis of executive function in working memory: an fMRI study based on individual differences. Neuroimage, 21(2), 623-631. 50. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585-589. 51. P.-H. Won. (2001).The comparison between visual thinking using computer and conventional media in the concept generation stages of design. Automation in Construction,10,319-325. 52. Pidgeon, L. M., Grealy, M., Duffy, A. H., Hay, L., McTeague, C., Vuletic, T., Coyle, D. Gilbert, S. J.(2016). Functional neuroimaging of visual creativity: a systematic review and meta-analysis. Brain and Behavior, 6(10), 1-26. 53. Posner, M. I., Petersen, S. E., Fox, P. T. Raichle, M. E. (1988). Localization of Cognitive Operations in the Human-Brain. Science, 240, 1627-1631. 54. Price, C. J. Friston, K. J. (1997). Cognitive conjunction: A new approach to brain activation experiments. Neuroimage, 5(4), 261-270. 55. Purcell, A. T. Gero, J. S. (1998). Drawings and the design process: A review of protocol studies in design and other disciplines and related research in cognitive psychology. Design Studies, 19(4), 389-430. 56. Saggar, M., Quintin, E. M., Kienitz, E., Bott, N. T., Sun, Z. C., Hong, W. C., Chien, Y. H., Liu, N., Dougherty, R. F., Royalty, A., Hawthorne, G. Reiss, A. L. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5, 1-11. 57. Schacter, D.L., Addis, D.R. Buckner, R. L. (2007). Remembering the past to imagine the future: the prospective brain. Nature Reviews Neuroscience, 8(9), 657-661. 58. Schacter, D.L. Addis, D.R. (2009). On the nature of medial temporal lobe contributions to the constructive simulation of future events. Philos. Trans. R. Soc. Biol. Sci., 364, 1245–1253. 59. Schacter, D.L., Addis, D.R., Hassabis, D., Martin, V. C., Spreng, R. N. Szpunar, K. K. (2012) The Future of Memory: Remembering, Imagining, and the Brain. Neuron, 76(4), 677-694. 60. Schieber, M. H. (2000). New views of the primary motor cortex. Neuroscientist, 6(5), 380-389. 61. Schon, D. A. Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design Studies, 13(2), 135-156. 62. Schutze, M., Sachse, P. Romer, A. (2003). Support value of sketching in the design process. Research in Engineering Design 14 , 89-97. 63. Simonton, D. K. (2000). Creativity - Cognitive, personal, developmental, and social aspects. American Psychologist, 55,151-158. 64. Sternberg R. J. Lubart, T.I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. 65. Suwa, M. Tversky, B. (1997). what do architects and students perceive in their design sketches? A protocol analysis. Design Studies, 18, 385-403. 66. Suwa, M., Purcell T. Gero J. (1998). Macroscopic analysis of design processes based on a scheme for coding designers’ cognitive actions. Design Studies, 19, 455-483. 67. Tomasino, B. Gremese, M. (2016). The Cognitive Side of M1. Frontiers in Human Neuroscience, 10, 1-20. 68. Zevin J. (2009). Word Recognition. Encyclopedia of Neuroscience, 517-522. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53208 | - |
| dc.description.abstract | 景觀設計為一個需要創意和整合的過程,研究者將創意認知過程分為發想到評估兩個階段(Ellamil et al., 2012; Goel, 2014)。隨著科技繪圖工具的發展,手繪的技能漸漸被取代,然而許多研究指出手繪草圖對於設計發展為一個重要的思考工具(Goel, 1995;Goldschmit, 1991)。 隨著神經科學在認知心理學的發展,研究者可以透過神經影像更了解設計過程與設計者的認知心理;目前已有研究開始探討景觀設計的腦區,蔡宇平(2015)發現於精煉(評估)階段為左背外側前額葉(Dorsolateral Prefrontal Cortex, DLPFC-L)具顯著活化;王怡茹(2017)發現景觀設計時,主要反應的腦區為兩側海馬旁迴(Parahippocampal Gyrus-L/R)。目前較少研究以腦神經科學的方式,探討手繪草圖於景觀設計的角色,並且景觀設計的腦區仍未有一致性的結果。因此,本研究要探討: (一) 手繪草圖對於景觀設計的影響 (二) 驗證景觀設計歷程腦區反應。 本研究以功能性磁振造影(Functional Magnetic Resonance Imaging, fMRI)為工具,每個受測者皆進行三組手繪草圖組與三組對照組,手繪草圖組階段為:描圖(Line Tracing)、手繪發想(Sketch Thinking)和定案階段(Sketch Thinking Final Draw);對照組階段為:看圖(Line Seeing)、不動手發想(Non-Sketch Thinking)和定案階段(Non-Sketch Thinking Final Draw)。 研究結果顯示,手繪草圖組與對照組對腦區反應主要差異為左中央溝前廻(Precentral Gyrus-L)和左中央溝後迴(Postcentral Gyrus-L);發想階段手繪草圖組促進左頂葉頂下葉(Inferior Parietal Lobule, IPL-L)活化;定案階段手繪草圖組於左運動輔助區(Supplementary Motor Area, SMA-L)、左背外側前額葉(Dorsolateral Prefrontal Cortex, DLPFC-L)和左背前扣帶回皮層(Dorsal Anterior Cingulate Cortex, dACC-L)皆有顯著反應。景觀歷程中,手繪草圖組發想階段主要反應腦區為右海馬旁迴(Parahippocampal Gyrus-R),定案階段為右背外側前額葉(Dorsolateral Prefrontal Cortex, DLPFC-R)。心理問卷的部分對照組不動手發想與定案階段具顯著反應。藉由本研究腦區反應結果了解到手繪草圖有助於設計者更具系統性整合設計、創意發想和認知控制;景觀設計歷程中,發想階段主要具情節記憶提取的功能,定案階段主要為負責注意力、計畫和認知控制的功能。 | zh_TW |
| dc.description.abstract | The process of landscape architecture design combines creativity and integration. Researchers divided the creative cognition process into generation and evolution (Ellamil et al., 2012; Goel, 2014). With the development of technical drawing tools, the technique of freehand sketching is replaced gradually. However, many researchers have proved that freehand sketching place an important role in the process of generation. With the development of neuroscience in cognitive psychology, through neuroimaging, researchers have a better understanding of the design process and cognitive psychology. Recently, the brain response of landscape architecture design has been discovered. Yu-Ping Tsai (2015)found out that the Dorsolateral Prefrontal Cortex (DLPFC) response on the stage of evolution, and Yi-Ju Wang (2017) found out that Parahippocampal Gyrus response mainly during landscape architecture design. However, seldom research discusses the role of freehand sketching in landscape architecture design through neuroscience, while the brian response of landscape architecture still needs more exploration. Therefore, the main discussion of this research is: (1) the influence of freehand sketching on landscape architecture design (2) confirm the brain response of landscape architecture process. Using Functional Magnetic Resonance Imaging (fMRI), each subject participants in three groups of sketching groups and three groups of comparison groups. For sketching groups include three stages: line tracing, sketch thinking, and sketch thinking final draw; comparison groups include: line seeing, non-sketch thinking, and non-sketch thinking final draw. We found out that the major difference of brain responses between sketching groups and comparison groups are left precentral gyrus and left postcentral gyrus. For the difference of the generation stages(sketch thinking>non-sketch thinking) include left inferior parietal lobule(IPL); and for the final stage(ST final draw>non-ST final draw) the sketching groups activate left supplementary motor area(SMA), left dorsolateral prefrontal cortex(DLPFC) and left dorsal anterior cingulate cortex(dACC). Moreover, in the process of landscape architecture design, sketching groups activate the right parahippocampal gyrus for the sketch thinking stage and activate the right dorsolateral prefrontal cortex(DLPFC) for the sketch thinking final draw stage. As for the psychological questionnaire, there are statistically significant differences between non- sketch thinking and non-ST final drawing. Through this research, we can gain more understanding that freehand sketching support designer in integrating design, creative thinking, and cognitive control. In the process of landscape architecture design, the stage of generation takes a role in episodic memory retrieval, and the stage of evolution takes a role in attention, planning, and cognitive control functions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:51:03Z (GMT). No. of bitstreams: 1 U0001-0508202010473500.pdf: 14420590 bytes, checksum: dcbd4602c467e14fd613f00abd202afb (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………… I 誌謝……………………………………………………………… II 中文摘要…………………………………………………… III Abstract………………………………………………… V 目錄……………………………………………………………… VII 圖目錄………………………………………………………… X 表目錄………………………………………………………… XII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第二章 文獻回顧 3 第一節 手繪草圖與景觀設計認知歷程 3 第二節 創意和腦區反應 7 第三節 小結 17 第三章 研究方法 18 第一節 研究架構與假設 19 第二節 研究變項 21 第三節 實驗設計與流程 25 第四節 資料處理與統計分析方法 33 第四章 資料分析結果與討論 38 第一節 樣本特性分析 38 第二節 腦造影研究結果 38 第三節 心理問卷結果 63 第四節 實驗結果討論 64 第五章 結論與建議 78 第一節 結論 78 第二節 後續研究建議 81 參考文獻 83 附錄 i 附錄一、行為與社會科學研究倫理審查核可證明 i 附錄二、研究參與知情同意書 ii 附錄三、實驗受測者說明及同意書 vi 附錄四、實驗前說明簡報 viii 附錄五、fMRI實驗題本 xii 附錄六、實驗問卷 xv 附錄七、原文附錄 xvii 附錄八、論文相似度比對報告 xxxv | |
| dc.language.iso | zh-TW | |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 背外側前額葉 | zh_TW |
| dc.subject | 中央溝前廻 | zh_TW |
| dc.subject | 手繪草圖 | zh_TW |
| dc.subject | 景觀設計 | zh_TW |
| dc.subject | Landscape Architecture Design | en |
| dc.subject | Freehand Sketching | en |
| dc.subject | Precentral Gyrus | en |
| dc.subject | DLPFC | en |
| dc.subject | fMRI | en |
| dc.title | 手繪景觀設計對腦區反應的影響 | zh_TW |
| dc.title | The Influence of Freehand Sketching Landscape Architecture Design on the Brain Response. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晏州(Yann-Jou Lin),歐聖榮(Sheng-Jung Ou),何立智(Li-Chih Ho),張伯茹(Po-Ju Chang) | |
| dc.subject.keyword | 景觀設計,手繪草圖,中央溝前廻,背外側前額葉,功能性磁振造影, | zh_TW |
| dc.subject.keyword | Landscape Architecture Design,Freehand Sketching,Precentral Gyrus,DLPFC,fMRI, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202002438 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202010473500.pdf 未授權公開取用 | 14.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
