Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章
dc.contributor.authorXiao-Cheng Sunen
dc.contributor.author孫曉檉zh_TW
dc.date.accessioned2021-06-15T16:50:18Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-07
dc.identifier.citation1. Analog Devices Inc. Engineeri. Linear Circuit Design Handbook, 2011, 2nd ed., Burlington: Newnes
2. C.K Hu. Mater. Res. Soc. Symp. Proc., 1998, 511, 305
3. D.R Lide. Handbook of chemistry and physics, 1995, 12th ed., New York: CRC Press
4. D. Lu, C.P Wong. Materials for Advanced Packaging, 2009, New York: Springer Science Business Media
5. S. Hall. IEEE Trans. Microw. Theory Tech. 2007, 55, 12
6. N.H. Hendricks. Solid State Technol., 1995, 7, 117
7. A.M. Wilson. Thin Solid Films, 1981, 83, 145
8. C.E. Sroog. Progr Polym Sci., 1991, 16, 561
9. W. Volksen. Adv. Polym. Sci., 1994, 117, 111
10. W. Volksen, T. Pascal, J. Labadie, M. Sanchez. Polym. Mater. Sci. Engng., 1992, 66, 235
11. J.M. Steigerwald, S.P. Murarka, R.J. Gutmann. Chemical mechanical planarization of microelectronic materials, 1997, New York: John Wiley Sons
12. S.T Chen. Mater Res. Soc. Symp. Proc., 1995, 381, 141
13. M.K. Ghosh, K.L. Mittal. Polyimides: fundamentals and applications, 1996, New York: CRC Press
14. J.R. Pratt, T.L. StClair, D.A. Blackwell, N.L. Alphin. Polym. Engng. Sci., 1989, 29, 63
15. B. Sillion, G. Rabilloud, J. Garapon, O. Gain, J. Vallet. Mater Res. Soc. Symp. Proc., 1993, 381, 93
16. J. Brandrup, E.H. Immergut. Polymer handbook, 1989, New York: Wiley
17. D.W. Van Krevelen. Properties of polymers, 1990, 4th ed., New York: Elsevier 18. B.C. Auman, D.P. Higley, K.V. Scherer. Polym. Prepr., 1993, 34, 389
19. M. Yusa, S. Takeda, Y. Miyadera. Polym. Prepr. Jpn., 1990, 39, 897
20. T. Matsuura, Y. Hasuda, S. Nishi, N. Yamada. Macromolecules, 1991, 24, 5001 21. S. Ando, T. Matsuura, S. Nishi. Polymer, 1992, 33, 2934
22. F.W. Harris, S.L.C Hsu. High Perform. Polym., 1989, 1, 1
113
23. F.W. Harris, S.L.C Hsu, C.C Tso. Polym. Prepr., 1990, 33, 342
24. F.W Harris, S.L.C Hsu, C.J Lee, B.S Lee, F. Arnold, S.Z.D Cheng. Mater Res. Soc. Symp. Proc., 1991, 227, 3
25. G. Hougham, G. Tesoro. Polym. Mater Sci. Engng., 1989, 61, 369
26. M.K. Gerber, J.R. Pratt, A.K. StClair, T.L. StClair. Polym. Prepr., 1990, 31, 340 27. R.A. Buchanan, R.F. Mundhenke, H.C. Lin. Polym. Prepr., 1991, 32, 193
28. A.C. Misra, G. Tesoro, G. Hougham, S.M. Pendarkar. Polymer, 1992, 33, 1078
29. T. Matsuura, M. Ishizawa, Y. Hasuda, S. Nishi. Macromolecules, 1992, 25, 3540 30. R. Reuter, H. Franke, C. Feger. Appl. Optics., 1988, 27, 4565
31. C. Feger, M.M. Khojasteh, S. Htoo. Polyimide sci. and tech., 1993, 15
32. M. Haider, E. Chenevey, R.H. Vora, W. Cooper, M. Glick, M. Jaffe. Mater Res. Soc. Symp. Proc., 1991, 227, 35
33. K.R. Carter. Mater Res. Soc. Symp. Proc., 1997, 476, 87
34. A.E. Feiring, B.C. Auman, E.R. Wonchoba. Macromolecules, 1993, 26, 2779
35. C. Feger, M.M. Khojasteh, S. Htoo. Adv. in polyimi. Sci. and Tech., 1993, 33
36. J. Pellerin, R. Fox, H.M. Ho. Mater Res. Soc. Symp. Proc., 1997, 476, 113
37. A.J. McKerrow, C.N. Liao, H.C. Liou, P.S. Ho, J. Leu, B.C. Auman. Polym. Prepr., 1996, 37, 176
38. N.H. Hendricks. Solid State Technol., 1995, 7, 117
39. D. Towery, M.A. Fury. J Electron Mater., 1998, 27, 1088
40. N.H. Hendricks, K.S.Y. Lau, A.R. Smith, W.B. Wan. Polym. Mater. Sci. Symp. Proc., 1995, 381, 59
41. J.A. Irvin, C.J. Neff, K.M. Kane, P.E. Cassidy, A.K. StClair. J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1675
42. L.F. Thompson, C.G. Wilson, S. Tagawa. Polymers for microelectronics, 1994, Michigan: American Chemical Society
43. J.W. Labadie, J.L. Hedrick. Makromol. Chem.: Macromol. Symp., 1992, 54, 313 44. J.W. Labadie, J.L. Hedrick. Macromolecules, 1990, 23, 537
45. R.N. Vrtis, K.A. Heap, W.F. Burgoyne, L.M. Robeson. Mater. Res. Soc. Symp. Proc., 1997, 443, 171
46. W.F. Burgoyne, L.M. Robeson, R.N. Vrtis. U.S. Patern No. 5658994, 1997
47. A.S. Hay, H.S. Blanchard, G.F. Endres, J.W. Eustance. Am. Chern. Soc., 1959, 81,
114
6335
48. A.S. Hay, U.S. Paten No.3306875, 1967
49. A.F. Yee. Polym. Eng. Sci., 1977, 17, 213
50. S.T. Wellinghoff, E.J. Baer. Appl. Polym. Sci., 1978, 22, 2025
51. A.S. Hay. J. Polym. Sci., 1962, 58, 581
52. G. Odian. Principals of Polymerization, 1991, 2nd ed., New Jersey: John Wiley Sons
53. E. N. Peters, S. Fisher, H. Guo. IPC/APEX 2009 Conference Proceedings
54. E.N. Peters, S. M. Fisher, H. Guo. On Board Technology, 2009, 12
55. D. W. Fox. U.S. Patent No. 3375298, 1968
56. E. N. Peters. Engineering Plastics Handbook Thermoplastics, Properties, and Applications, 2006, New York: McGraw-Hill
57. D. M. White. J. Polym. Sci. Part A, 1971, 663
58. H.J. Hwang, S.W. Hsu, C.S. Wang. J. Appl. Polym. Sci., 2008, 110
59. C.Y. Li. Paten No. 2013083062 A1, 2013
60. T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda. Polymer, 2004, 45, 843
61. J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda. Chem Lett, 2007, 36, 238
62. S. Amou, S. Yamada, A. Takahashi, A. Nagai, M. Tomoi. J. Appl. Polym. Sci., 2004, 92, 1252
63. J. Nunoshige, H. Akahoshi, Y. Liao, S. Horiuchi, Y. Shibasaki, M. Ueda. Polym. J., 2007, 39, 828
64. N. Hilderto, V. Percec. J. Polym. Sci. Pol. Chem., 1986, 24, 973
65. D.W Fox. U.S Paten No. 3375298, 1968
66. R. Sezi, A. Weber, M. Keitmann. Eur. Paten No. EP 918050, 1999
67. R. Sezi, A. Weber, M. Keitmann. Eur. Paten No. EP 905169, 1999
68. R. Sezi, A. Weber, M. Keitmann. Eur. Paten No. EP 906903, 1999
69. W. Heitz. Pure Appl. Chem., 1995, 67, 1951
70. N.R. Grove, P.A. Kohl, S.A. Bidstrup, R.A. Shick, B.L. Goodall, S. Jayaraman. Mater. Res. Soc. Symp. Proc., 1997, 476
71. P.H. Ownsend, S.J. Martin, J. Godschalx. Mater. Res. Soc. Symp. Proc., 1997, 476, 9
72. D.A. Babb, D.W. Smith, S.J. Martin, J.P. Godschalx. World Patent No. WO
115
97/10193, 1997
73. R.A. Kirchhoff, K.J. Bruza. Adv. Polym. Sci., 1994, 117, 1
74. G.R. Yang, Y.P. Zhao, J.M. Neirynck, S.P. Murarka, R.J. Gutman. Mater. Res. Soc. Symp. Proc., 1997, 476, 161
75. R.J. Gutmann, T.P. Chow, D.J. Duquette, T.M. Lu, J.F. McDonald, S.P. Murarka. Mater. Res. Soc. Symp. Proc. 1995, 381, 177
76. M.E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen. Microelectron. Engng., 1997, 33, 327
77. C. H. Hassell, J. R. Lewis. ibid., 1961, 2312
78. D. H. R. Barton, G. W. Kirby. J. Chem. Soc., 1962, 806
79. H. Finkbeiner, A. S. Hay, H. S. Blanchard, G. F. Endres. J. Org. Chem., 1966, 31, 549
80. A.F. Yee. Polym. Eng. Sci., 1977, 17, 213
81. S.T. Wellinghoff, E.J. Baer. Appl. Polym. Sci., 1978, 22, 2025
82. Heijboer, J. J. Polym. Sci. Poly. Symp. , 1968, 16, 3755
83. A.S. Hay. J. Polym. Sci., 1962, 58, 581
84. O, Olabisi, L.M. Robeson, M.T. Shaw. Polymer-polymer miscibility, 1979, Michigan: Academic Press
85. T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda. Polymer, 2004, 45, 843
86. J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda. Chem. Lett., 2007, 36, 238
87. S. Amou, S. Yamada, A. Takahashi, A. Nagai, M. Tomoi. J. Appl. Polym. Sci., 2004, 92, 1252
88. J. Nunoshige, H. Akahoshi, Y. Liao, S. Horiuchi, Y. Shibasaki, M. Ueda. Polym. J., 2007, 39, 828
89. A.S. Hay, G.F. Endres. Polym. Lett., 1965, 3, 887
90. Y. Shibasaki. Macromolecules, 2007, 40, 5322
91. J. Nunoshige. High Performance Polymers, 2010, 22, 458
92. Y. Shibasaki. Polymer Journal, 2009, 41, 12, 1136
93. A.S. Hay. J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 505
94. M. Ratzsch, H. Bucka, S. Ivanchev, et al. Macromol. Symp. 2004, 217, 435 95. R.T. Chern, et al. J. Membrane Sci., 1987, 35, 103
96. R. H. Vora et al. Adv. Funct. Mater., 2001, 11, 5 116
97. D. E. Aspnes. Am. J. Phys., 1982, 50, 704
98. C. Kittel, Introduction to Solid State Physics, 2005, 8th ed., New York: Wiley
99. E. Kobayashi, et al. Polymer Journal, 1990, Vol. 22, No. 9, 804
100. D. Sharad, C. Bhagat, et al. Macromolecules, 2012, 45, 1174
101. A. W. Williamson. J. Chem. Soc., 1852, 4, 229
102. R. H. Baker, W. B. Martin. J. Org. Chem., 1960, 25, 1496
103. H. Inoue, E. Saito, H. Fujiwara. U.S. Patent No. 7838576, 2008
104. K. J, Saunders. Organic Polymer Chemistry, 2013, 4th ed., New York: Springer Science Business Media
105. T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda. Polymer, 2004, 45
106. C.T. Mortimer. Reaction Heats and Bond Strengths, 1960, New York: Elsevier 107. A. Inabi, T. Kashiwagi. Eur. Polym. J., 1987, 23, 871
108. J. W. Nicholson. Chemistry of Polymers, 2012, 4th ed., U.K.: Royal Society of Chemistry
109. Z. Ahmad, Polymeric Dielectric Materials, 2012, New York: Springer Science Business Media
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53196-
dc.description.abstract近年來,在無線通訊設備的使用上,更強的數據傳輸能力和更快的數據傳輸速度被人們所需求。在下一代的訊息傳輸系統,電子訊號的頻率已經增長到了GHz。對於需要如此高頻的應用,我們需要使用低介電常數和低消散因子的材料。聚苯醚系列材料是一種被廣泛使用的工程塑膠,因其具有良好的機械性質和熱性質。同時,在高頻應用中他也具有非常出色的電氣性質。然而,聚苯醚對覆銅基板的黏著力不佳,並且其在工業應用上的熱性質及機械性質還需要提高。
在論文的第一部份中,我們使用氧化聚合的方式去聚合鄰位烷基苯酚。通過使用較為大體積胺作為配位基,我們可以合成高分子量的聚鄰位烷基苯醚,且其可以直接與交聯劑反應。所製備的高分子具有較好的熱穩定性,其熱裂解溫度均在360 oC以上;並且,其具有較低的加工操作溫度,低於180 oC。此三種高分子,都存在半結晶性的結構。隨著側鏈烷基長度增加,高分子的Td 和 Tg 都會降低。但具有更長側鏈烷基的高分子,展現出較好的半結晶性結構。在10 GHz的條件下,聚鄰甲基苯酚的Dk值為2.61且其Df值為0.00429。高分子中存在殘留的銅離子,會導致介電常數和消散因子較高,因此需加強純化程序,以為工業應用。
在論文的第二部份中,我們改質商品化的聚苯醚寡聚物,引入羥基或羧基來提高介電材料對基材的黏著力。由基於OPE改質材料製備所得薄膜皆具有良好的熱穩定性及電性質。 OPE和GPH系列膜列熱解溫度分別高於300 oC及380 oC。隨著GPH系列高分子中羥基含量的減少及交聯膜中橡膠含量的增加,介電常數及消散因子都得到降低。GPH系列最佳膜具有最低的介電常數值為2.48, 最低消散因子值為0.0082,可應用於高頻印刷電路板。
zh_TW
dc.description.abstractLarge capacity and high transmission speed are required in wireless communication devices in recent years. The frequency of electrical signals has reached the GHz bands for the next generation communication system. For such high frequency applications, materials with a low dielectric and a low dissipation factor are needed. Poly (phenylene ether)(PPE) is one of the widely used engineering materials for its good mechanical and thermal properties. It also shows excellent electric properties for using in high frequency applications. However, PPE has a poor adhesion to copper foil and their thermal and mechanical properties need to be improved for industrial applications.
In the first part of this thesis, we used oxidative polymerization to polymerize o-alkylphenylene. By using bulky amines as ligand, we could synthesize high molecular weight poly (o-alkylphenylene) and it could directly react with a crosslinking agent. The prepared materials exhibited a high thermal stability with Td above 360 oC, and a low processing temperature lower than 180 oC. All of the three polymers showed semicrystalline structures. With the increased length of the alkyl chain, both Td and Tg were decreased. The Dk and Dk values of poly (2-methylphenylene ether) were 2.61 and 0.00429 at 10 GHz. The Cu2+ ion residue would lead to a higher Dk and Df value, thus purification on the prepared materials would be important for practical applications.
In the second part of the thesis, we modify the commercial oligo (phenylene ether)-styrene end-functionalized materials (OPE-2st) with hydroxyl or carboxyl groups to improve the adhesion of the dielectric materials to the substrates. The films prepared from OPE modified materials all showed good thermal stability and electric properties. OPE and GPH based films had Td values higher than 300 oC and 380 oC, respectively. With the decreased hydroxyl content in GPH and the increased rubber composition in the cured films, both the Dk and Df values were reduced. The optimum GPH based films had the lowest Dk of 2.48 and Df of 0.00825 at 10 GHz, which could have potential applications for high frequency print circuit boards.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:50:18Z (GMT). No. of bitstreams: 1
ntu-104-R02524095-1.pdf: 8323085 bytes, checksum: 7f26c49b8c7d0023c09dcb79eec0e4b5 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents審定書............................................................................................................I
致謝...............................................................................................................II
Abstract.......................................................................................................IV
摘要..............................................................................................................VI
Table Captions.............................................................................................XI
Scheme Captions........................................................................................XII
Figure Captions..........................................................................................XIII
Chapter 1 General Introduction.....................................................................1
1.1 Advanced Print Circuit Board Materials...................................................1
1.1.1 Print Circuit Board for High Frequency Applications.............................1
1.1.2 Electrical Considerations for Print Circuit Board Materials....................4
1.1.3 Other Requirements for Print Circuit Board Materials...........................6
1.2 Classifications of Low Dielectric Constant and Dissipation Factor Materials.......................................................................................................7
1.2.1 Polyimides............................................................................................7
1.2.2 Poly (arylethers)..................................................................................10
1.2.3 Poly (phenylene ethers).......................................................................11
1.2.4 Other Polymers...................................................................................15
1.3 Research Objectives..............................................................................17
Chapter 2 Oxidative Coupling Polymerization of Poly (o-alkylphenylene ether) ...................................................................................................................31
2.1 Introduction...........................................................................................31
2.2 Experimental Section............................................................................33
2.2.1 Materials............................................................................................33
2.2.2 Synthesis of Poly (2-methylphenylene ether).......................................34
2.2.3 Synthesis of Poly (2-ethylphenylene ether).........................................35
2.2.4 Synthesis of Poly (2-propylphenylene ether).......................................36
2.2.5 Film Preparation.................................................................................37
2.2.5.1 Film Preparation of PMPE................................................................37
2.2.5.2 Film Preparation of Crosslinked PMPE.............................................38
2.2.6 Characterization.................................................................................39
2.3 Results and Discussions........................................................................40
2.3.1 Chemical Structure Characterization...................................................40
2.3.2 Effects of Reaction Condition on Molecular Weight.............................44
2.3.3 Thermal Properties.............................................................................47
2.3.4 Wide-Angle X-ray Scattering (WAXS)..................................................49
2.3.5 Degree of Crosslinking on the Cured Films.........................................50
2.3.6 Electrical Properties...........................................................................50
2.4 Conclusion............................................................................................53
Chapter 3 New Adhesive Materials with Low Dielectric Constant and Dissipation Factor using Modified OPE and GPH Based Polymers..............65
3.1 Introduction...........................................................................................65
3.2 Experimental Section.............................................................................67
3.2.1 Materials............................................................................................67
3.2.2 Preparation of OPE-OH......................................................................68
3.2.3 Preparation of OPE-COOH.................................................................69
3.2.4 Preparation of GPH with Ally Groups..................................................70
3.2.5 Film Preparation.................................................................................72
3.2.5.1 Film Preparation of Modified OPE-2st based Polymers....................72
3.2.5.2 Film Preparation of Modified GPH based Polymers..........................72
3.2.6 Characterization.................................................................................73
3.3 Results and Discussions.......................................................................74
3.3.1 Chemical Structure Characterization..................................................74
3.3.2 Degree of Crosslinking on the Cured Films.........................................78
3.3.3 Thermal Properties.............................................................................79
3.3.4 Electrical Properties...........................................................................84
3.3.5 Moisture Absorption...........................................................................86
3.3.6 Peel off strength.................................................................................87
3.4 Conclusion............................................................................................88
Chapter 4 Conclusion................................................................................111
Reference..................................................................................................113
dc.language.isoen
dc.title低介電常數與低消散因子聚苯醚之製備與鑑定zh_TW
dc.titleSynthesis and Characterization of PPE based Materials with Low Dielectric Constant and Dissipation Factoren
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游洋雁,蘇鴻文
dc.subject.keyword高頻應用,低介電常數,低消散因子,聚苯醚,氧化聚合,zh_TW
dc.subject.keywordHigh frequency applications,low dielectric constant,low dissipation factor,poly (phenylene ether),oxidative polymerization,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2015-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved