Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王錦堂(Jin-Town Wang)
dc.contributor.authorYun-Ting Tsaien
dc.contributor.author蔡昀庭zh_TW
dc.date.accessioned2021-06-15T16:49:08Z-
dc.date.available2020-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-07
dc.identifier.citation1. Lin, Y.T., et al., Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC Microbiol, 2012. 12: p. 13.
2. Podschun, R. and U. Ullmann, Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1998. 11(4): p. 589-603.
3. Siu, L.K., et al., Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis, 2012. 12(11): p. 881-7.
4. Liu, Y.C., D.L. Cheng, and C.L. Lin, Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Intern Med, 1986. 146(10): p. 1913-6.
5. Saccente, M., Klebsiella pneumoniae liver abscess, endophthalmitis, and meningitis in a man with newly recognized diabetes mellitus. Clin Infect Dis, 1999. 29(6): p. 1570-1.
6. Fang, C.T., et al., A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med, 2004. 199(5): p. 697-705.
7. Wang, J.H., et al., Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 1998. 26(6): p. 1434-8.
8. Ko, W.C., et al., Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis, 2002. 8(2): p. 160-6.
9. Okano, H., et al., Clinicopathological analysis of liver abscess in Japan. Int J Mol Med, 2002. 10(5): p. 627-30.
10. Lederman, E.R. and N.F. Crum, Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol, 2005. 100(2): p. 322-31.
11. Chung, D.R., et al., Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infect, 2007. 54(6): p. 578-83.
12. Tsai, F.C., et al., Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis, 2008. 14(10): p. 1592-600.
13. Rahimian, J., et al., Pyogenic liver abscess: recent trends in etiology and mortality. Clin Infect Dis, 2004. 39(11): p. 1654-9.
14. Chen, W., et al., Clinical outcome and prognostic factors of patients with pyogenic liver abscess requiring intensive care. Crit Care Med, 2008. 36(4): p. 1184-8.
15. Pan, Y.J., et al., Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol, 2008. 46(7): p. 2231-40.
16. Hsu, C.R., et al., Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS One, 2013. 8(8): p. e70092.
17. Fung, C.P., et al., A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 2002. 50(3): p. 420-4.
18. Mizuta, K., et al., Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun, 1983. 40(1): p. 56-61.
19. Ambler, R.P., The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci, 1980. 289(1036): p. 321-31.
20. Chaves, J., et al., SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2001. 45(10): p. 2856-61.
21. Jacoby, G.A. and A.A. Medeiros, More extended-spectrum beta-lactamases. Antimicrob Agents Chemother, 1991. 35(9): p. 1697-704.
22. Lin, T.L., et al., Extended-spectrum beta-lactamase genes of Klebsiella pneumoniae strains in Taiwan: recharacterization of shv-27, shv-41, and tem-116. Microb Drug Resist, 2006. 12(1): p. 12-5.
23. Paterson, D.L. and R.A. Bonomo, Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev, 2005. 18(4): p. 657-86.
24. http://www.lahey.org/studies/webt.asp.
25. Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51
26. Hirakata, Y., et al., Regional variation in the prevalence of extended-spectrum beta-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). Diagn Microbiol Infect Dis, 2005. 52(4): p. 323-9.
27. Mendes, R.E., et al., Regional resistance surveillance program results for 12 Asia-Pacific nations (2011). Antimicrob Agents Chemother, 2013. 57(11): p. 5721-6.
28. Pitout, J.D. and K.B. Laupland, Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis, 2008. 8(3): p. 159-66.
29. Nordmann, P., L. Dortet, and L. Poirel, Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med, 2012. 18(5): p. 263-72.
30. Doumith, M., et al., Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother, 2009. 63(4): p. 659-67.
31. Papp-Wallace, K.M., et al., Carbapenems: past, present, and future. Antimicrob Agents Chemother, 2011. 55(11): p. 4943-60.
32. Yang, Y. and K. Bush, Biochemical characterization of the carbapenem-hydrolyzing beta-lactamase AsbM1 from Aeromonas sobria AER 14M: a member of a novel subgroup of metallo-beta-lactamases. FEMS Microbiol Lett, 1996. 137(2-3): p. 193-200.
33. Chiu, S.K., et al., National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One, 2013. 8(7): p. e69428.
34. Annual report of Taiwan Nosocomial Infection Surveillance Systems,
2011.Available:
http://www.kmuh.org.tw/info/admin/actboard/data/20125112222508.pdf.
Accessed 2013 Apr 06.
.
35. Nordmann, P., G. Cuzon, and T. Naas, The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis, 2009. 9(4): p. 228-36.
36. Tzouvelekis, L.S., et al., Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012. 25(4): p. 682-707.
37. Jones, R.N., M.A. Pfaller, and M.S. Group, Antimicrobial activity against strains of Escherichia coli and Klebsiella spp. with resistance phenotypes consistent with an extended-spectrum beta-lactamase in Europe. Clin Microbiol Infect, 2003. 9(7): p. 708-12.
38. Ramphal, R. and P.G. Ambrose, Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis, 2006. 42 Suppl 4: p. S164-72.
39. Yahav, D., et al., Colistin: new lessons on an old antibiotic. Clin Microbiol Infect, 2012. 18(1): p. 18-29.
40. Falagas, M.E. and S.K. Kasiakou, Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care, 2006. 10(1): p. R27.
41. Falagas, M.E., et al., Effectiveness and nephrotoxicity of intravenous colistin for treatment of patients with infections due to polymyxin-only-susceptible (POS) gram-negative bacteria. Eur J Clin Microbiol Infect Dis, 2006. 25(9): p. 596-9.
42. Fritsche, T.R., et al., Activity of tigecycline tested against a global collection of Enterobacteriaceae, including tetracycline-resistant isolates. Diagn Microbiol Infect Dis, 2005. 52(3): p. 209-13.
43. DiPersio, J.R. and M.J. Dowzicky, Regional variations in multidrug resistance among Enterobacteriaceae in the USA and comparative activity of tigecycline, a new glycylcycline antimicrobial. Int J Antimicrob Agents, 2007. 29(5): p. 518-27.
44. Lu, C.T., et al., Nationwide surveillance in Taiwan of the in-vitro activity of tigecycline against clinical isolates of extended-spectrum beta-lactamase-producing Enterobacteriaceae. Int J Antimicrob Agents, 2008. 32 Suppl 3: p. S179-83.
45. Pankey, G.A., Tigecycline. J Antimicrob Chemother, 2005. 56(3): p. 470-80.
46. Livermore, D.M., Tigecycline: what is it, and where should it be used? J Antimicrob Chemother, 2005. 56(4): p. 611-4.
47. Noskin, G.A., Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis, 2005. 41 Suppl 5: p. S303-14.
48. Ruzin, A., D. Keeney, and P.A. Bradford, AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother, 2005. 49(2): p. 791-3.
49. Dean, C.R., et al., Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother, 2003. 47(3): p. 972-8.
50. http://www.fda.gov/Drugs/DrugSafety/ucm224370.htm.
51. Balandin Moreno, B., et al., Tigecycline therapy for infections due to carbapenemase-producing Klebsiella pneumoniae in critically ill patients. Scand J Infect Dis, 2014. 46(3): p. 175-80.
52. Denys, G.A., S.M. Callister, and M.J. Dowzicky, Antimicrobial susceptibility among gram-negative isolates collected in the USA between 2005 and 2011 as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.). Ann Clin Microbiol Antimicrob, 2013. 12: p. 24.
53. Mayne, D. and M.J. Dowzicky, In vitro activity of tigecycline and comparators against organisms associated with intra-abdominal infections collected as part of TEST (2004-2009). Diagn Microbiol Infect Dis, 2012. 74(2): p. 151-7.
54. Hawser, S.P., et al., Trending 7 years of in vitro activity of tigecycline and comparators against Gram-positive and Gram-negative pathogens from the Asia-Pacific region: Tigecycline Evaluation Surveillance Trial (TEST) 2004-2010. Int J Antimicrob Agents, 2012. 39(6): p. 490-5.
55. Al-Qadheeb, N.S., et al., Evolution of tigecycline resistance in Klebsiella pneumoniae in a single patient. Ann Saudi Med, 2010. 30(5): p. 404-7.
56. Tsai, H.Y., et al., Emergence of tigecycline-resistant Klebsiella pneumoniae after tigecycline therapy for complicated urinary tract infection caused by carbapenem-resistant Escherichia coli. J Infect, 2012. 65(6): p. 584-6.
57. van Duin, D., et al., Tigecycline Therapy for Carbapenem-Resistant Klebsiella pneumoniae (CRKP) Bacteriuria Leads to Tigecycline Resistance. Clin Microbiol Infect, 2014.
58. Spanu, T., et al., In vivo emergence of tigecycline resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother, 2012. 56(8): p. 4516-8.
59. Ruzin, A., et al., Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2005. 49(3): p. 1017-22.
60. Roy, S., et al., Tigecycline susceptibility in Klebsiella pneumoniae and Escherichia coli causing neonatal septicaemia (2007-10) and role of an efflux pump in tigecycline non-susceptibility. J Antimicrob Chemother, 2013. 68(5): p. 1036-42.
61. Veleba, M., et al., Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2012. 56(8): p. 4450-8.
62. Rosenblum, R., et al., Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents, 2011. 38(1): p. 39-45.
63. Hentschke, M., et al., ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother, 2010. 54(6): p. 2720-3.
64. Nielsen, L.E., et al., A Novel Mechanism for the Rapid in vivo Emergence of Tigecycline Non-Susceptibility in Klebsiella pneumonia: IS5 Element Integration. Antimicrob Agents Chemother, 2014.
65. Villa, L., et al., Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother, 2014. 58(3): p. 1707-12.
66. Green, M.R., J. Sambrook, and J. Sambrook, Molecular cloning : a laboratory manual. 4th ed. 2012, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.
67. Huang, T.W., et al., Copy Number Change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS One, 2013. 8(4): p. e62774.
68. Akiyama, T., J. Presedo, and A.A. Khan, The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents, 2013. 42(2): p. 133-40.
69. Hentschke, M., et al., Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob Agents Chemother, 2010. 54(3): p. 1319-22.
70. Waters, S.H., et al., The tetracycline resistance determinants of RP1 and Tn1721: nucleotide sequence analysis. Nucleic Acids Res, 1983. 11(17): p. 6089-105.
71. Wu, C.C., et al., Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology, 2010. 156(Pt 7): p. 1983-92.
72. Lin, Y.T., et al., Clinical and microbiological characteristics of tigecycline non-susceptible Klebsiella pneumoniae bacteremia in Taiwan. BMC Infect Dis, 2014. 14: p. 1.
73. Miller, V.L. and J.J. Mekalanos, A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol, 1988. 170(6): p. 2575-83.
74. Herrero, M., V. de Lorenzo, and K.N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol, 1990. 172(11): p. 6557-67.
75. Hsieh, P.F., et al., Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis, 2008. 197(12): p. 1717-27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53177-
dc.description.abstract近年來克雷伯氏肺炎桿菌(Klebsiella pneumoniae)造成的院內感染以及社區型肝膿瘍的案例不斷上升,抗藥性的報導也持續增加,從帶有超廣效β-內醯胺酶(Extended spectrum beta-lactamase; ESBL)基因的克雷伯氏肺炎桿菌,到近年來對最後一線藥物碳青黴烯類(carbapenem)藥物也出現抗藥性,產生了carbapenem-
resistant K. pneumoniae(CRKP)。老虎黴素(tigecycline)是新一代的藥物,可以用來治療CRKP的感染,在全球陸續有抗藥性的報導。目前文獻指出在克雷伯氏肺炎桿菌中,造成老虎黴素抗藥性的原因主要為AcrAB-TolC外排幫浦(efflux pump)及OqxAB外排幫浦及一個新的外排幫浦KpgA大量表現,也有報導指出30S核醣體次單元S10 蛋白質的突變也會降低對老虎黴素的感受性。本研究收集分離自台北榮總31株抗老虎黴素菌株並研究其抗藥機轉,發現有14株有AcrAB-TolC外排幫浦過量表現的情形及12株有OqxAB外排幫浦過量表現,此外也有5株KpgA外排幫浦表現量上升,另外有1株帶有30S核醣體次單元S10 蛋白質突變,而仍有12株未帶有目前所報導的抗藥機轉,其中有一株臨床菌株229其最小抑菌濃度(minimal inhibitory concentration; MIC )高達64 μg/ml,為了瞭解其抗藥機轉,我們建構表現基因庫(Expression library)以尋找抗藥機制。篩選結果發現帶有tetracycline resistance protein(TetA),會使大腸桿菌對於老虎黴素抗藥性顯著上升,而後tetA補至老虎黴素感受性克雷伯氏肺炎桿菌菌株NTUH-K2044染色體上,可以使其對於老虎黴素MIC上升2倍,隨後發現tetA基因位於菌株229中大小約為10kb的質體上,將此質體送入NTUH-K2044中也可使其MIC上升8倍,而我們在菌株229中將tetA剔除,發現其MIC下降4倍至16 μg/ml。因此在本研究中,我們證實在克雷伯氏肺炎桿菌中tetA能夠造成老虎黴素的抗藥性。此外也發現菌株229中ramR基因被transposase插入,將野生型的ramR補回至229中可使MIC下降8倍,進一步補回229 tetA基因剔除株中可使MIC下降至1 μg/ml回到敏感型,因此確認菌株229高抗藥性的情形藉由tetA過度表現和ramR失去功能這兩個機轉參與。
zh_TW
dc.description.abstractRecently, nosocomial infection and community-acquired disease caused byKlebsiella pneumoniae were increasing. A large proportion of them developed drug resistance including ESBL-producing K. pneumoniae or even carbapenem-resistant K. pneumoniae(CRKP) which confer resistance to last-line drugs like carbapenem and monobactam. However, tigecycline is first glycylcycline drugs derived from tetracycline which were used to treat CRKP infected patients. But bacteria also acquired tigecycline resistance recently. Previous studies indicated that overexpression of efflux pump such as AcrA pump, OqxA pump or KpgA pump contributed in tigecycline resistance of K. pneumonia. Mutation of S10 protein which is a subunit of 30S ribosome was also reported to involve in tigecycline resistance. In this study, 31 tigecycline-resistant K. pneumoniae strains from Taipei Veterans General Hospital(VGH) were collected. Among 31 tigecycline-resistant K. pneumonia strains, 14 isolates possessed overexpression of AcrA pump, 12 strains possessed overexpression of OqxA pump, 5 strains acquired overexpression of KpgA pump and 1 isolate had S10 protein mutation. Therefore, no reported mechanisms were detected in 12 isolates including one isolate (229) with high minimal inhibitory concentration(MIC) up to 64 μg/ml. In order to elucidate its resistant mechanism, we constructed an expression library. After selection, we found that harboring tetA gene in E.coli can increase tigecycline MIC significantly. Complementation of tetA gene in the sensitive K. pneumoniae strain NTUH-K2044 also increased tigecycline MIC by two fold. Furthermore, deletion of tetA gene in strain 229 decreased its tigecycline MIC by four fold. We found that tetA gene was located in a plasmid with a size of 10kb in strain 229. Transfering this plasmid to NTUH-K2044 resulted in increased MIC to tigecycline from 1 μg/ml to 8 μg/ml. Therefore, in this study we demonstrated that tetA gene involved in tigecycline resistance. On the other hands, we found that ramR gene was inserted by a transposase in strain 229. Complementation of an intact ramR gene in 229ΔtetA strain decreased tigecycline MIC to 1 μg/ml. In conclusion, strain 229 aquired high-resistance to tigecycline by two mechanisms including tetA overexpression and ramR mutation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:49:08Z (GMT). No. of bitstreams: 1
ntu-104-R02445113-1.pdf: 1936260 bytes, checksum: 09c78c1d1a7ad3db3272bb3900be5900 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
目錄 VII
表目錄 X
圖目錄 XI
第一章、緒論 1
1.1 克雷伯氏肺炎桿菌簡介 1
1.2 帶有超廣效β-內醯胺酶(Extended spectrum beta-lactamase; ESBL)基因的克雷伯氏肺炎桿菌(klebsiella pneumoniae) 1
1.3抗carbapenem類的克雷伯氏肺炎桿菌(carbapenem-resistant klebsiella pneumoniae; CRKP) 2
1.4多重抗藥性克雷伯氏肺炎桿菌的臨床治療 3
1.5 老虎黴素(Tigecycline, TGC),新一代的glycylcline的藥物 4
1.6 研究動機 5
第二章、材料與方法 6
2.1材料 6
2.1.1菌株與載體 6
2.1.2培養基(Media) 6
2.1.3抗生素(Antibiotics) 6
2.1.4引子(Primers) 6
2.2方法 7
2.2.1抗生素感受性測試(Antimicrobial susceptibility test) 7
2.2.2萃取克雷伯氏肺炎桿菌的全基因表現體(total RNA) 8
2.2.3反轉錄定量聚合酶連鎖反應(Quantitative real-time reverse- 8
2.2.4建構表現型基因庫 10
2.2.5基因補回細菌基因體上(chromosomal complementation) 12
2.2.6克雷伯氏肺炎桿菌突變株庫 13
2.2.7突變株插入之序列分析 14
2.2.8篩選抗藥性下降突變株之方法 15
2.2.9克雷伯氏肺炎桿菌基因剔除株之建構 16
2.2.10基因剔除 16
第三章、結果 18
3.1、抗生素感受性測試 (Susceptibility Testing) 18
3.2、外排幫浦表現量(Expression Level of Efflux Pump) 18
3.3、探討外排幫浦上游調控基因 19
3.4核醣體S10蛋白質定序 19
3.5、建構表現型基因庫(Construction of Expression Library) 20
3.6再次轉型作用(Retransformation) 22
3.7將tetA和pecM利用染色體互補至NTUH-K2044 22
3.8將菌株229中帶有tetA的質體送至NTUH-K2044 22
3.9建構229菌株的tetA基因剔除突變株 23
3.10 tetA基因在老虎黴素抗藥菌株的盛行率(prevalence) 23
3.11、建構突變型基因庫(Construction of Mutant Library) 23
3.12建構菌株229的無抗生素標記基因剔除突變株 24
3.13 建構菌株229基因剔除株 25
3.14 突變株41-4B及229ΔromA的外排幫浦RNA表現量 25
3.15將ramR補回至菌株229ΔtetA 25
3.16總結(conclusion) 26
第四章、討論 27
4.1外排幫浦RNA表現量分析 27
4.2探討幫浦上游調控基因 28
4.3表現型基因庫的涵蓋度與篩選 28
4.4突變基因庫篩選結果探討 30
4.5臨床菌株229對老虎黴素高抗藥性的原因 32
參考文獻 62
dc.language.isozh-TW
dc.title克雷伯氏肺炎桿菌對老虎黴素之抗藥機制研究zh_TW
dc.titleTigecycline Resistant Mechanism(s) in Klebsiella pneumoniae strainsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡丰喬(Feng-Chiao Tsai),董馨蓮(Shin-Lian Doong),林雅容
dc.subject.keyword克雷伯氏肺炎桿菌,抗藥性,老虎黴素,外排幫浦,四環黴素抗藥基因,zh_TW
dc.subject.keywordKlebsiella pneumonia,tigecycline,efflux pump,AcrA,ramR,OqxA,tetracycline-resistant gene(tetA),en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2015-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved