請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53159完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 符文美(Wen-Mei Fu) | |
| dc.contributor.author | Tzu-Kwan Yang | en |
| dc.contributor.author | 楊子寬 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:47:58Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-08 | |
| dc.identifier.citation | Aniksztejn L, Bregestovski P, Ben-Ari Y (1991). Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur. J. Pharmacol. 205: 327-328.
Anwyl R (1999). Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Brain Res. Rev. 29: 83-120. Ayalon G, Stern-Bach Y (2001). Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31: 103-113. Bayer TA, Wirths O (2010). Intracellular accumulation of amyloid-Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Front. Aging Neurosci. 2: 8. Benquet P, Gee CE, Gerber U (2002). Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J. Neurosci. 22: 9679-9686. Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M (2014). Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat. Neurosci. 17: 223-231. Blackshaw LA, Page AJ, Young RL (2011). Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci. 5: 40. Bliss TV, Collingridge GL (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39. Bonsi P, Cuomo D, De Persis C, Centonze D, Bernardi G, Calabresi P, et al. (2005). Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology 49 Suppl 1: 104-113. Buisson A, Choi DW (1995). The inhibitory mGluR agonist, S-4-carboxy-3-hydroxy-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death. Neuropharmacology 34: 1081-1087. Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA (2010). Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol. Biol. 610: 285-308. Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, Gandy S, et al. (2004). Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer's disease patients according to Braak stage. Exp. Neurol. 187: 299-309. Chang LC, Lin HY, Tsai MT, Chou RH, Lee FY, Teng CM, et al. (2014). YC-1 inhibits proliferation of breast cancer cells by down-regulating EZH2 expression via activation of c-Cbl and ERK. Br. J. Pharmacol. 171: 4010-4025. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2003). Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol. Pharmacol. 63: 1322-1328. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005). Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur. J. Neurosci. 21: 1679-1688. Choi KY, Chung S, Roche KW (2011). Differential binding of calmodulin to group I metabotropic glutamate receptors regulates receptor trafficking and signaling. J. Neurosci. 31: 5921-5930. Chu Z, Hablitz JJ (2000). Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res. 879: 88-92. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8: 79-84. Collingridge GL, Singer W (1990). Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol. Sci. 11: 290-296. Copani A, Bruno V, Battaglia G, Leanza G, Pellitteri R, Russo A, et al. (1995). Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide. Mol. Pharmacol. 47: 890-897. Cosgrave AS, McKay JS, Thippeswamy T (2010). Differential regulation of vasoactive intestinal peptide (VIP) in the dentate gyrus and hippocampus via the NO-cGMP pathway following kainic acid-induced seizure in the rat. J. Mol. Neurosci. 42: 359-369. Crowder JM, Croucher MJ, Bradford HF, Collins JF (1987). Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. J. Neurochem. 48: 1917-1924. Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11: 327-335. Danysz W, Parsons CG (2012). Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br. J. Pharmacol. 167: 324-352. DaRocha-Souto B, Scotton TC, Coma M, Serrano-Pozo A, Hashimoto T, Sereno L, et al. (2011). Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J. Neuropathol. Exp. Neurol. 70: 360-376. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem. 282: 11590-11601. DeArmond SJ, Prusiner SB (1995). Etiology and pathogenesis of prion diseases. Am. J. Pathol. 146: 785-811. Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA (2010). Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J. Neurosci. 30: 9166-9171. Dinamarca MC, Weinstein D, Monasterio O, Inestrosa NC (2011). The synaptic protein neuroligin-1 interacts with the amyloid beta-peptide. Is there a role in Alzheimer's disease? Biochemistry 50: 8127-8137. Dingledine R, Borges K, Bowie D, Traynelis SF (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51: 7-61. Do Carmo S, Cuello AC (2013). Modeling Alzheimer's disease in transgenic rats. Mol. Neurodegener. 8: 37. Endoh T (2004). Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res. 1024: 212-224. Enya M, Morishima-Kawashima M, Yoshimura M, Shinkai Y, Kusui K, Khan K, et al. (1999). Appearance of sodium dodecyl sulfate-stable amyloid beta-protein (Abeta) dimer in the cortex during aging. Am. J. Pathol. 154: 271-279. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt H, Stasch JP (2006). NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5: 755-768. Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, et al. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408: 101-106. Ferraguti F, Conquet F, Corti C, Grandes P, Kuhn R, Knopfel T (1998). Immunohistochemical localization of the mGluR1beta metabotropic glutamate receptor in the adult rodent forebrain: evidence for a differential distribution of mGluR1 splice variants. J. Comp. Neurol. 400: 391-407. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG (2015). Soluble amyloid-beta oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front. Cell. Neurosci. 9: 191. Fleming JJ, England PM (2010). AMPA receptors and synaptic plasticity: a chemist's perspective. Nat. Chem. Biol. 6: 89-97. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, et al. (2001). Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol. Aging 22: 993-1005. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005). Subunit arrangement and function in NMDA receptors. Nature 438: 185-192. Ghahremanitamadon F, Shahidi S, Zargooshnia S, Nikkhah A, Ranjbar A, Soleimani Asl S (2014). Protective effects of Borago officinalis extract on amyloid beta-peptide(25-35)-induced memory impairment in male rats: a behavioral study. Biomed Res Int 2014: 798535. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, et al. (2003). Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. U. S. A. 100: 10417-10422. Goure WF, Krafft GA, Jerecic J, Hefti F (2014). Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics. Alzheimers Res. Ther. 6: 42. Gu Z, Liu W, Yan Z (2009). {beta}-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J. Biol. Chem. 284: 10639-10649. Haberny KA, Paule MG, Scallet AC, Sistare FD, Lester DS, Hanig JP, et al. (2002). Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity. Toxicol. Sci. 68: 9-17. Henley JM, Wilkinson KA (2013). AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin. Neurosci. 15: 11-27. Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 269-279. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52: 831-843. Hsu HK, Juan SH, Ho PY, Liang YC, Lin CH, Teng CM, et al. (2003). YC-1 inhibits proliferation of human vascular endothelial cells through a cyclic GMP-independent pathway. Biochem. Pharmacol. 66: 263-271. Huettner JE (2003). Spine-tingling excitement from glutamate receptors. Sci. STKE 2003: pe53. Hwang TL, Hung HW, Kao SH, Teng CM, Wu CC, Cheng SJ (2003). Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway. Mol. Pharmacol. 64: 1419-1427. Izumi Y, O'Dell KA, Zorumski CF (2013). Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA Receptor-mediated Neurosteroidogenesis. Physiol Rep 1: e00133. Jang BG, In S, Choi B, Kim MJ (2014). Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. Neuroreport 25: 1281-1288. Johnson JW, Ascher P (1990). Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys. J. 57: 1085-1090. Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, et al. (2013). FcgammaRIIb mediates amyloid-beta neurotoxicity and memory impairment in Alzheimer's disease. J. Clin. Invest. 123: 2791-2802. Kessels HW, Malinow R (2009). Synaptic AMPA receptor plasticity and behavior. Neuron 61: 340-350. Kim JS, Vossel G, Gamer M (2013). Effects of emotional context on memory for details: the role of attention. PLoS One 8: e77405. Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, et al. (1999). Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24: 461-469. Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994). YC-1, a novel activator of platelet guanylate cyclase. Blood 84: 4226-4233. Kumar A, Singh A, Ekavali (2015). A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol. Rep. 67: 195-203. Kumar S, Walter J (2011). Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 3: 803-812. Kung HF (2012). The beta-Amyloid Hypothesis in Alzheimer's Disease: Seeing Is Believing. ACS Med. Chem. Lett. 3: 265-267. Kurup P, Zhang Y, Venkitaramani DV, Xu J, Lombroso PJ (2010). The role of STEP in Alzheimer's disease. Channels (Austin) 4: 347-350. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27: 796-807. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. (2004). Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J. Neurosci. 24: 10191-10200. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 95: 6448-6453. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457: 1128-1132. Lee D, Han YE, Lee SH, Sohn JW, Ho WK J. Neurosci. Lee HG, Zhu X, O'Neill MJ, Webber K, Casadesus G, Marlatt M, et al. (2004). The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiol. Exp. (Wars.) 64: 89-98. Leenders AG, Sheng ZH (2005). Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol. Ther. 105: 69-84. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009). Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62: 788-801. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011). Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31: 6627-6638. Liu F, Gong X, Zhang G, Marquis K, Reinhart P, Andree TH (2005). The inhibition of glycogen synthase kinase 3beta by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Abeta peptides. J. Neurochem. 95: 1363-1372. Liu SJ, Gasperini R, Foa L, Small DH (2010). Amyloid-beta decreases cell-surface AMPA receptors by increasing intracellular calcium and phosphorylation of GluR2. J. Alzheimers Dis. 21: 655-666. Lujan R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P (1997). Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat. 13: 219-241. Luscher C, Huber KM (2010). Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65: 445-459. Magrane J, Smith RC, Walsh K, Querfurth HW (2004). Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J. Neurosci. 24: 1700-1706. Marshall J, Wong KY, Rupasinghe CN, Tiwari R, Zhao X, Berberoglu ED, et al. (2015). Inhibition of N-Methyl-D-Aspartate-Induced Retinal Neuronal Death by Polyarginine Peptides is Linked to the Attenuation of Stress-Induced Hyperpolarization of the Inner Mitochondrial Membrane Potential. J. Biol. Chem. Masters CL, Selkoe DJ (2012). Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2: a006262. Meldrum BS (2000). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130: 1007s-1015s. Menegon A, Bonanomi D, Albertinazzi C, Lotti F, Ferrari G, Kao HT, et al. (2006). Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J. Neurosci. 26: 11670-11681. Morris RG (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J. Neurosci. 9: 3040-3057. Movsesyan VA, Stoica BA, Faden AI (2004). MGLuR5 activation reduces beta-amyloid-induced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor. J. Neurochem. 89: 1528-1536. Mucke L, Selkoe DJ (2012). Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb. Perspect. Med. 2: a006338. Murakami K, Shimizu T, Irie K (2011). Formation of the 42-mer Amyloid beta Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer's Disease. J Amino Acids 2011: 654207. Niswender CM, Conn PJ (2010). Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50: 295-322. Nussbaum JM, Seward ME, Bloom GS (2013). Alzheimer disease: a tale of two prions. Prion 7: 14-19. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. (2003). Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39: 409-421. Olive MF, Cleva RM, Kalivas PW, Malcolm RJ (2012). Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 100: 801-810. Overk CR, Cartier A, Shaked G, Rockenstein E, Ubhi K, Spencer B, et al. (2014). Hippocampal neuronal cells that accumulate alpha-synuclein fragments are more vulnerable to Abeta oligomer toxicity via mGluR5--implications for dementia with Lewy bodies. Mol. Neurodegener. 9: 18. Palop JJ, Mucke L (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13: 812-818. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, et al. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150: 633-646. Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008). Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210: 7-13. Parsons CG, Stoffler A, Danysz W (2007). Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system--too little activation is bad, too much is even worse. Neuropharmacology 53: 699-723. Perez N, Sugar J, Charya S, Johnson G, Merril C, Bierer L, et al. (1991). Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer's disease. Brain Res. Mol. Brain Res. 11: 249-254. Pitt J, Thorner M, Brautigan D, Larner J, Klein WL (2013). Protection against the synaptic targeting and toxicity of Alzheimer's-associated Abeta oligomers by insulin mimetic chiro-inositols. FASEB J. 27: 199-207. Platt SR (2007). The role of glutamate in central nervous system health and disease--a review. Vet. J. 173: 278-286. Rahimi F, Shanmugam A, Bitan G (2008). Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer's disease and related disorders. Curr Alzheimer Res 5: 319-341. Rammes G, Danysz W, Parsons CG (2008). Pharmacodynamics of memantine: an update. Curr. Neuropharmacol. 6: 55-78. Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, et al. (2010). Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66: 739-754. Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW (1995). Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355: 455-469. Rongo C (2013). Going mobile: AMPA receptors move synapse to synapse in vivo. Neuron 80: 1339-1341. Roque PJ, Guizzetti M, Giordano G, Costa LG (2011). Quantification of synaptic structure formation in cocultures of astrocytes and hippocampal neurons. Methods Mol. Biol. 758: 361-390. Rothermund L, Friebe A, Paul M, Koesling D, Kreutz R (2000). Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br. J. Pharmacol. 130: 205-208. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002). Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. U. S. A. 99 Suppl 4: 16412-16418. Salter MW (1998). Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem. Pharmacol. 56: 789-798. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model. Proc. Natl. Acad. Sci. U. S. A. 109: E2895-2903. Selkoe DJ (2008). Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192: 106-113. Sepulveda FJ, Parodi J, Peoples RW, Opazo C, Aguayo LG (2010). Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS One 5: e11820. Serge A, Fourgeaud L, Hemar A, Choquet D (2002). Receptor activation and homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J. Neurosci. 22: 3910-3920. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011). Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 1. Shankar GM, Walsh DM (2009). Alzheimer's disease: synaptic dysfunction and Abeta. Mol. Neurodegener. 4: 48. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27: 2866-2875. Shariati MB, Sohrabi M, Shahidi S, Nikkhah A, Mirzaei F, Medizadeh M, et al. (2014). Acute Effects of Ecstasy on Memory Are more Extensive than Chronic Effects. Basic Clin Neurosci 5: 225-230. Sheng M, Sabatini BL, Sudhof TC (2012). Synapses and Alzheimer's disease. Cold Spring Harb. Perspect. Biol. 4. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, et al. (1997). Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17: 7503-7522. Sikorski AF, Goodman SR (1991). The effect of synapsin I phosphorylation upon binding of synaptic vesicles to spectrin. Brain Res. Bull. 27: 195-198. Simonyi A, Schachtman TR, Christoffersen GR (2005). The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Perspect 18: 353-361. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8: 1051-1058. Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, et al. (2007). YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26: 3941-3951. Suzuki Y, Yamazaki Y, Hozumi Y, Okada M, Tanaka T, Iseki K, et al. (2012). NMDA receptor-mediated Ca(2+) influx triggers nucleocytoplasmic translocation of diacylglycerol kinase zeta under oxygen-glucose deprivation conditions, an in vitro model of ischemia, in rat hippocampal slices. Histochem. Cell Biol. 137: 499-511. Sweeney MD, Sagare AP, Zlokovic BV (2015). Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J. Cereb. Blood Flow Metab. 35: 1055-1068. Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56: 933-944. Tackenberg C, Brandt R (2009). Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau. J. Neurosci. 29: 14439-14450. Tarawneh R, Holtzman DM (2012). The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med. 2: a006148. Thippeswamy T, Morris R (1997). Nerve growth factor inhibits the expression of nitric oxide synthase in neurones in dissociated cultures of rat dorsal root ganglia. Neurosci. Lett. 230: 9-12. Tsai YC, Lee YM, Lam KK, Lin JF, Wang JJ, Yen MH, et al. (2013). The role of heat shock protein 70 in the protective effect of YC-1 on beta-amyloid-induced toxicity in differentiated PC12 cells. PLoS One 8: e69320. Tu S, Okamoto S, Lipton SA, Xu H (2014). Oligomeric Abeta-induced synaptic dysfunction in Alzheimer's disease. Mol. Neurodegener. 9: 48. Turturici G, Sconzo G, Geraci F (2011). Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011: 618127. Upreti C, Zhang XL, Alford S, Stanton PK (2013). Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 66: 31-39. Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006). The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762: 1068-1082. Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13: 190-196. Wilcox KC, Lacor PN, Pitt J, Klein WL (2011). Abeta oligomer-induced synapse degeneration in Alzheimer's disease. Cell. Mol. Neurobiol. 31: 939-948. Willard SS, Koochekpour S (2013). Glutamate, glutamate receptors, and downstream signaling pathways. Int. J. Biol. Sci. 9: 948-959. Williams RS, Bate C (2015). An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA dependent signalling. Neuropharmacology. Wright A, Vissel B (2012). The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front. Mol. Neurosci. 5. Wu CC, Ko FN, Teng CM (1997). Inhibition of platelet adhesion to collagen by cGMP-elevating agents. Biochem. Biophys. Res. Commun. 231: 412-416. Wu CC, Ko FN, Kuo SC, Lee FY, Teng CM (1995). YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol. 116: 1973-1978. Yan J, Zhou B, Taheri S, Shi H (2011). Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One 6: e27798. Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, et al. (2003). YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 95: 516-525. Yu W, Lu B (2012). Synapses and dendritic spines as pathogenic targets in Alzheimer's disease. Neural Plast. 2012: 247150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53159 | - |
| dc.description.abstract | 阿茲海默氏症是一種、發病進程緩慢的神經退化性疾病,此疾病會導致認知功能障礙。阿茲海默氏症在病理上的特徵是由異常聚集的β-澱粉樣蛋白(Aβ)所造成。Aβ會誘發神經突觸毒性,造成神經突觸損失和神經細胞死亡,最終造成記憶功能下降。近來許多的證據指出,oligomerized Aβ胜肽是主要產生毒性的元兇,它會對神經突觸造成損害,影響神經網絡的正常運作。因此, Aβ逐漸成為阿茲海默氏症的診斷標誌物和治療的研究標的。
本篇研究目的是探究YC- 1對於Aβ誘導的毒性是否具有神經保護作用以及其潛在的保護機制。YC-1是benzyl indazole的衍生物,具有多方面的藥理作用,例如其能活化鳥苷酸環化酶(sGC)以及抑制缺氧誘導因子1α(HIF-1α)。在本篇研究中,我們在初代海馬迴神經元培養以oligomeric Aβ誘發毒性。發現oligomeric Aβ會導致神經樹突的損失並造成細胞存活率下降,而這些現象會因為伴隨給予YC-1或其前驅物而被拮抗。我們接著進一步探究YC-1及其前驅物在對抗Aβ所誘導之毒性的神經保護效果與機制。研究結果顯示,YC-1及其前驅物的神經保護作用,會因為給予HSP70抑制劑而被拮抗。 在本篇研究中,由腦室內(i.c.v.)給藥的途徑,以被動迴避試驗評估小鼠的學習記憶功能更進一步探究了YC-1對Aβ的急性保護神經效果。我們發現在給予Aβ後,明顯造成小鼠記憶力變差,而伴隨YC-1或其前驅物的給予皆能顯著地減緩Aβ使小鼠記憶力變差的作用。此外,我們還檢視了小鼠的皮質區域和海馬迴區域一些突觸蛋白的表現量。Aβ造成了一些麩氨酸受體的表現量明顯減少,例如NMDA受體分類中的NR1和NR2B亞型受體、AMPA受體分類中的GluR1亞型受體、和mGluR5受體。其他突觸蛋白,例如neuroligin1(NLGN1)和synapsin的表現量也有明顯的減少。而伴隨給予YC-1或其前驅物,皆顯著增加了蛋白的表現量,這個結果顯示,YC-1及其前驅物對於Aβ所誘導之神經元損傷具有保護作用。 綜合以上的結論,Aβ oligomers誘導之神經樹突損失和神經元死亡,可以透過給予YC-1或其前驅物來保護,其神經保護作用的機制可能部分與HSP70的參與有關。急性腦室內給予可溶性Aβ oligomers造成了小鼠顯著的記憶喪失,並且,在皮質區域和海馬迴區域,皆造成突觸蛋白的減少,而伴隨給予YC-1或其前驅物能顯著減緩記憶喪失及拮抗突觸蛋白的減少。我們的結果顯示,YC-1及其前驅物,不論是在體外和體內實驗,皆對Aβ所誘導的神經毒性扮演著神經保護的角色。 | zh_TW |
| dc.description.abstract | Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to debilitating cognitive deficits. Aggregates of amyloid-beta (Aβ) are the major pathological hallmark of AD which leads to synaptic toxicity and results in synaptic loss, neuronal death and eventually memory dysfunction. Emerging evidence suggests that soluble oligomerized Aβ peptides are the principal neurotoxic agents that contribute to synaptic damage, resulting in dysfunctional neuronal networks in AD patients. Therefore, Aβ has become a popular target for the therapeutic interventions and diagnostic marker for AD.
The aim of this study is to investigate whether YC-1 exerts neuroprotective effect against Aβ-induced toxicity and its potential mechanisms. YC-1, a derivative of benzyl indazole, possesses various pharmacological actions, such as the activation of soluble guanylyl cyclase (sGC) and the inhibition of hypoxia-induced factor-1α (HIF-1α). Here we found that exposure of primary hippocampal neuronal cultures to Aβ1-42 oligomers significantly led to dendritic loss and decreased cell viability, which was rescued by concomitant treatment of YC-1 or its precursor. We thus investigated the possible mechanisms for the protective effect of YC-1. Our results showed that concomitant treatment of HSP70 inhibitor antagonized the neuroprotective effect of YC-1 and its precursor. Following intracerebroventricular (i.c.v.) administration of Aβ oligomers, we assessed the acute neuroprotective effect of YC-1 or its precursor on memory function using the passive avoidance test in mice. Aβ treatment significantly led to memory impairment, which was reversed by concomitant treatment of YC-1 or its precursor. Moreover, we examined the expression of some synaptic proteins from cortex and hippocampus regions of mice. Aβ treatment significantly reduced the expression of some glutamate receptors, such as the NR1 and NR2B subunit of NMDA receptors, GluR1 subunit of AMPA receptors and mGluR5 receptor. The expression of other synaptic proteins such as neuroligin 1(NLGN1) and synapsin was also reduced. Concomitant treatment of YC-1 or its precursor both markedly inhibited Aβ-induced synaptic loss, indicating the protective effect against Aβ-induced neuronal damage. In conclusion, Aβ oligomer treatment significantly reduced dendritic density, resulted in slender dendrites and also neuronal cell death, which were attenuated by concomitant treatment of YC-1 or its precursor, and HSP70 may be involved in the neuroprotective effect of YC-1 or its precursor. Acute intracerebroventricular (i.c.v.) administration of soluble Aβ oligomers induced significant memory loss and certain synaptic protein loss in cortex and hippocampus region of mice, which could be antagonized by YC-1 or its precursor. Our results demonstrated that YC-1 or its precursor plays a neuroprotective role against Aβ-induced neurotoxicity both in vitro and in vivo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:47:58Z (GMT). No. of bitstreams: 1 ntu-104-R02443017-1.pdf: 2277766 bytes, checksum: f49352fbef39ddfe68ace4ba5d7715b7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abbreviations ………….……….……….…………….…….………….………………..1
摘要 .……………………………………………………………………………………3 Abstract …………………………………………………………………………….……5 Chapter 1 Introduction ………………………………………………….………….....7 1-1. Alzheimer’s disease ………………………………………………..…7 1-2. Amyloid-β (Aβ) ………………….…………………………….....…..9 1-2-1. Oligomeric forms of Aβ…………………….…………..……….10 1-3. Synaptic dysfunction and memory impairment .…………………….11 1-4. Synaptic glutamate receptors in CNS……………………………......12 1-5. Synaptic effects of Aβ oligomers ………………………..………….16 1-6. YC-1 ...………………………………………………………….…...19 Chapter 2 Materials and methods ……………………………….………………….26 2-1. Animals ………….………………….……….…….………………..26 2-2. Material and Reagents ……………….……….…….….….….……..26 2-1-1. Preparation of Aβ oligomers ……….…….…….….…….……...27 2-3. Brain tissue lysate preparation…………………………………….…....28 2-4. Western blotting …………….………….………….……………….......28 2-5. Primary Hippocampal neuronal cultures ……….….….………….….....29 2-6. MTT viability assay ……….…………….….…….….….……….….....29 2-7. Lactate Dehydrogenase (LDH) Release Assay ………….….….….…...29 2-8. FITC-Phalloidin staining ……….….….………………………….….....30 2-8. Drug treatment ……….….….…………………….…..….….….………31 2-10. Intracerebroventricular (i.c.v.) injection …………..……….…………31 2-11. Passive avoidance test …………….……………………….….………31 2-12. Data analysis …………….…….…….……………………….……….32 Chapter 3 Results ………….…….….…..……...………...…….………...………….. 34 3-1. YC-1 and its precursor inhibit Aβ-induced neuronal death in primary hippocampal neuronal cultures.…………………………………...34 3-2. Inhibition of HSP70 attenuated the neuroprotection mediated by YC-1 and its precursor in primary hippocampal neuronal cultures.35 3-3. YC-1 and its precursor inhibit Aβ-induced dendritic loss in primary hippocampal neuronal cultures.…………………………...……....36 3-4. YC-1 and its precursor antagonize Aβ-induced memory impairment…………………………...…………………………....37 3-5. YC-1 and its precursor inhibits certain NMDAR loss in cortical and hippocampal regions of the brain in intracerebroventricularly Aβ- injected mice .…………………...……………………………..… 38 3-6. YC-1 and its precursor inhibits certain mGluR and AMPAR loss in cortical and hippocampal regions of the brain in intracerebroventricularly Aβ-injected mice……….….........….…39 3-7. YC-1 and its precursor inhibits NLGN1 and synapsin loss in cortical and hippocampal regions of the brain in intracerebroventricularly Aβ-injected mice………………………………………………..…40 Chapter 4 Discussion …………….………...………….…………………….…….….41 Figures …..………….………...………….….……….……….……….…….….….….52 References …………….…………….…………………….………………...................63 圖目錄 Figure 3-1. YC-1 and its precursor inhibit 5 μM Aβ-induced neuronal death in primary hippocampal neuronal cultures …………………………………..……………….52 Figure 3-2. YC-1 and its precursor inhibit 10 μM Aβ-induced neuronal death in primary hippocampal neuronal cultures ………..……….….….….…………….…………53 Figure 3-3. Inhibition of HSP70 attenuates the neuroprotection mediated by YC-1 and its precursor in primary hippocampal neuronal cultures …….……….....…….….54 Figure 3-4. YC-1 and its precursor inhibit Aβ-induced dendritic loss in primary hippocampal neuronal cultures …………………………………………………...55 Figure 3-5. YC-1 and its precursor antagonize Aβ-induced memory impairment using the passive avoidance task ……………………………………………………..…56 Figure 3-6. YC-1 inhibits Aβ-induced NMDAR loss in cortex and hippocampus ……………….……………….…….……………………….……...57 Figure 3-7. YC-1 precursor inhibits Aβ-induced NMDAR loss in cortex and hippocampus ………………………...…………….………………….…….….…58 Figure 3-8. YC-1 inhibits Aβ-induced certain mGluR and AMPAR loss in cortex and hippocampus …………….…..…………….….………………….…………….…59 Figure 3-9. YC-1 precursor inhibits Aβ-induced certain mGluR and AMPAR loss in cortex and hippocampus …….……………………………….…………..…….…60 Figure 3-10. YC-1 inhibits Aβ-induced synaptic protein loss in cortex and hippocampus …….……………………………………………….……….............61 Figure 3-11. YC-1 precursor inhibits Aβ-induced synaptic protein loss in cortex and hippocampus ……….………………….……………………………….…………62 | |
| dc.language.iso | en | |
| dc.subject | 阿茲海默氏症 | zh_TW |
| dc.subject | YC-1 | zh_TW |
| dc.subject | 神經保護 | zh_TW |
| dc.subject | 熱休克蛋白70 (HSP70) | zh_TW |
| dc.subject | oligomers | zh_TW |
| dc.subject | β-澱粉樣蛋白(Aβ) | zh_TW |
| dc.subject | heat shock protein 70 (HSP70) | en |
| dc.subject | β- amyloid (Aβ) | en |
| dc.subject | oligomers | en |
| dc.subject | YC-1 | en |
| dc.subject | neuroprotective effect | en |
| dc.subject | Alzheimer's disease | en |
| dc.title | YC-1對Aβ誘導之神經毒性的保護作用之探討 | zh_TW |
| dc.title | Protective effects of YC-1 against Aβ-induced neurotoxicity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林琬琬(Wan-Wan Lin),劉宏輝(Horng-Huei Liou),楊春茂(Chuen-Mao Yang),楊榮森(rsyang@ntuh.gov.tw) | |
| dc.subject.keyword | 阿茲海默氏症,β-澱粉樣蛋白(Aβ),oligomers,YC-1,神經保護,熱休克蛋白70 (HSP70), | zh_TW |
| dc.subject.keyword | Alzheimer's disease,β- amyloid (Aβ),oligomers,YC-1,neuroprotective effect,heat shock protein 70 (HSP70), | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
