請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53147
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周綠蘋(Lu-Ping Chow) | |
dc.contributor.author | Yung-Hsuan Huang | en |
dc.contributor.author | 黃詠璇 | zh_TW |
dc.date.accessioned | 2021-06-15T16:47:13Z | - |
dc.date.available | 2025-12-31 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-09 | |
dc.identifier.citation | 1 Laursen, L. A preventable cancer. Nature 516, S2-3, doi:10.1038/516S2a (2014). 2 Pellicoro, A., Ramachandran, P., Iredale, J. P. Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature reviews. Immunology 14, 181-194, doi:10.1038/nri3623 (2014). 3 Farazi, P. A. DePinho, R. A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature reviews. Cancer 6, 674-687, doi:10.1038/nrc1934 (2006). 4 Bruix, J., Sherman, M. American Association for the Study of Liver, D. Management of hepatocellular carcinoma: an update. Hepatology 53, 1020-1022, doi:10.1002/hep.24199 (2011). 5 Sherman, M. et al. Multidisciplinary Canadian consensus recommendations for the management and treatment of hepatocellular carcinoma. Current oncology 18, 228-240 (2011). 6 Xie, B., Wang, D. H. Spechler, S. J. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Digestive diseases and sciences 57, 1122-1129, doi:10.1007/s10620-012-2136-1 (2012). 7 Gauthier, A. Ho, M. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatology research : the official journal of the Japan Society of Hepatology 43, 147-154, doi:10.1111/j.1872-034X.2012.01113.x (2013). 8 Brown, W. S. Wendt, M. K. Integrin-mediated resistance to epidermal growth factor receptor-targeted therapy: an inflammatory situation. Breast cancer research : BCR 16, 448, doi:10.1186/s13058-014-0448-0 (2014). 9 Gatti, L. Zunino, F. Overview of tumor cell chemoresistance mechanisms. Methods in molecular medicine 111, 127-148, doi:10.1385/1-59259-889-7:127 (2005). 10 Matsson, P., Pedersen, J. M., Norinder, U., Bergstrom, C. A. Artursson, P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharmaceutical research 26, 1816-1831, doi:10.1007/s11095-009-9896-0 (2009). 11 Glavinas, H., Krajcsi, P., Cserepes, J. Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Current drug delivery 1, 27-42 (2004). 12 Gottesman, M. M. Mechanisms of cancer drug resistance. Annual review of medicine 53, 615-627, doi:10.1146/annurev.med.53.082901.103929 (2002). 13 Oh, K. T. et al. The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. International journal of molecular sciences 10, 3776-3792, doi:10.3390/ijms10093776 (2009). 14 Raguz, S. Yague, E. Resistance to chemotherapy: new treatments and novel insights into an old problem. British journal of cancer 99, 387-391, doi:10.1038/sj.bjc.6604510 (2008). 15 Chen, K. F. et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. The Journal of pharmacology and experimental therapeutics 337, 155-161, doi:10.1124/jpet.110.175786 (2011). 16 Masuda, M. et al. Alternative mammalian target of rapamycin (mTOR) signal activation in sorafenib-resistant hepatocellular carcinoma cells revealed by array-based pathway profiling. Molecular cellular proteomics : MCP 13, 1429-1438, doi:10.1074/mcp.M113.033845 (2014). 17 Zhai, B. Sun, X. Y. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World journal of hepatology 5, 345-352, doi:10.4254/wjh.v5.i7.345 (2013). 18 Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell 90, 403-404 (1997). 19 Pasquale, E. B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38-52, doi:10.1016/j.cell.2008.03.011 (2008). 20 Gucciardo, E., Sugiyama, N. Lehti, K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cellular and molecular life sciences : CMLS 71, 3685-3710, doi:10.1007/s00018-014-1633-0 (2014). 21 Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer 10, 165-180, doi:Doi 10.1038/Nrc2806 (2010). 22 Kullander, K. Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nature reviews. Molecular cell biology 3, 475-486, doi:10.1038/nrm856 (2002). 23 Zelinski, D. P., Zantek, N. D., Stewart, J. C., Irizarry, A. R. Kinch, M. S. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer research 61, 2301-2306 (2001). 24 Mudali, S. V. et al. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clinical experimental metastasis 23, 357-365, doi:10.1007/s10585-006-9045-7 (2006). 25 Yuan, W. et al. Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and lymphogenous metastasis. Pathology oncology research : POR 15, 473-478, doi:10.1007/s12253-008-9132-y (2009). 26 Abraham, S. et al. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 353-360, doi:10.1158/1078-0432.CCR-05-1505 (2006). 27 Shen, W. S. et al. Prognostic role of EphA2 in various human carcinomas: a meta-analysis of 23 related studies. Growth Factors 32, 247-253, doi:Doi 10.3109/08977194.2014.984806 (2014). 28 Liu, Y. et al. Clinical significance of EphA2 expression in squamous-cell carcinoma of the head and neck. Journal of cancer research and clinical oncology 137, 761-769, doi:10.1007/s00432-010-0936-2 (2011). 29 Miyazaki, T., Kato, H., Fukuchi, M., Nakajima, M. Kuwano, H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. International journal of cancer. Journal international du cancer 103, 657-663, doi:10.1002/ijc.10860 (2003). 30 Guo, C. et al. Prognostic significance of combinations of RNA-dependent protein kinase and EphA2 biomarkers for NSCLC. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 8, 301-308, doi:10.1097/JTO.0b013e318282def7 (2013). 31 Kikuchi, S. et al. Overexpression of Ephrin A2 receptors in cancer stromal cells is a prognostic factor for the relapse of gastric cancer. Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, doi:10.1007/s10120-014-0390-y (2014). 32 Xu, J. et al. High EphA2 protein expression in renal cell carcinoma is associated with a poor disease outcome. Oncology letters 8, 687-692, doi:10.3892/ol.2014.2196 (2014). 33 Huang, J. et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene 33, 2737-2747, doi:10.1038/onc.2013.238 (2014). 34 Brantley-Sieders, D. M. et al. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. Journal of cell science 117, 2037-2049, doi:10.1242/jcs.01061 (2004). 35 Zhuang, G. et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer research 70, 299-308, doi:10.1158/0008-5472.CAN-09-1845 (2010). 36 Himanen, J. P. et al. Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO reports 10, 722-728, doi:10.1038/embor.2009.91 (2009). 37 Sugiyama, N. et al. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. The Journal of cell biology 201, 467-484, doi:10.1083/jcb.201205176 (2013). 38 Miao, H. et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer cell 16, 9-20, doi:10.1016/j.ccr.2009.04.009 (2009). 39 Faraj, F. L. et al. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. TheScientificWorldJournal 2014, 212096, doi:10.1155/2014/212096 (2014). 40 Bilbro, J., Mart, M. Kyprianou, N. Therapeutic value of quinazoline-based compounds in prostate cancer. Anticancer research 33, 4695-4700 (2013). 41 Garrison, J. B., Shaw, Y. J., Chen, C. S. Kyprianou, N. Novel quinazoline-based compounds impair prostate tumorigenesis by targeting tumor vascularity. Cancer research 67, 11344-11352, doi:10.1158/0008-5472.CAN-07-1662 (2007). 42 Shaw, Y. J., Yang, Y. T., Garrison, J. B., Kyprianou, N. Chen, C. S. Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation. Journal of medicinal chemistry 47, 4453-4462, doi:10.1021/jm049752k (2004). 43 Petty, A. et al. A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PloS one 7, e42120, doi:10.1371/journal.pone.0042120 (2012). 44 Singh, S., Carpenter, A. E. Genovesio, A. Increasing the Content of High-Content Screening: An Overview. J Biomol Screen 19, 640-650, doi:Doi 10.1177/1087057114528537 (2014). 45 Zock, J. M. Applications of high content screening in life science research. Combinatorial chemistry high throughput screening 12, 870-876 (2009). 46 Barnard, R., Barnard, A., Salmon, G., Liu, W. Sreckovic, S. Histamine-induced actin polymerization in human eosinophils: an imaging approach for histamine H4 receptor. Cytometry. Part A : the journal of the International Society for Analytical Cytology 73, 299-304, doi:10.1002/cyto.a.20514 (2008). 47 Inglefield, J. R., Larson, C. J., Gibson, S. J., Lebrec, H. Miller, R. L. Apoptotic responses in squamous carcinoma and epithelial cells to small-molecule toll-like receptor agonists evaluated with automated cytometry. J Biomol Screen 11, 575-585, doi:10.1177/1087057106288051 (2006). 48 Dykens, J. A. et al. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicological sciences : an official journal of the Society of Toxicology 103, 335-345, doi:10.1093/toxsci/kfn056 (2008). 49 Ravez, S., Castillo-Aguilera, O., Depreux, P. Goossens, L. Quinazoline derivatives as anticancer drugs: a patent review (2011 - present). Expert opinion on therapeutic patents 25, 789-804, doi:10.1517/13543776.2015.1039512 (2015). 50 Beauchamp, A. Debinski, W. Ephs and ephrins in cancer: Ephrin-A1 signalling. Semin Cell Dev Biol 23, 109-115, doi:DOI 10.1016/j.semcdb.2011.10.019 (2012). 51 Tandon, M., Vemula, S. V. Mittal, S. K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert opinion on therapeutic targets 15, 31-51, doi:10.1517/14728222.2011.538682 (2011). 52 Liao-Chan, S. et al. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores. PloS one 10, e0124708, doi:10.1371/journal.pone.0124708 (2015). 53 Ha, K. D., Bidlingmaier, S. M., Zhang, Y., Su, Y. Liu, B. High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies. Molecular cellular proteomics : MCP 13, 3320-3331, doi:10.1074/mcp.M114.039768 (2014). 54 Wang, S. et al. Novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells. Journal of medicinal chemistry 55, 2427-2436, doi:10.1021/jm201743s (2012). 55 Wu, B. et al. Design and Characterization of Novel EphA2 Agonists for Targeted Delivery of Chemotherapy to Cancer Cells. Chemistry biology, doi:10.1016/j.chembiol.2015.06.011 (2015). 56 Tsouko, E., Wang, J., Frigo, D. E., Aydogdu, E. Williams, C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis, doi:10.1093/carcin/bgv087 (2015). 57 Qazi, A. K. et al. Quinazoline based small molecule exerts potent tumour suppressive properties by inhibiting PI3K/Akt/FoxO3a signalling in experimental colon cancer. Cancer letters 359, 47-56, doi:10.1016/j.canlet.2014.12.034 (2015). 58 Curtis, J. R. Bateman, F. J. A. Use of Prazosin in Management of Hypertension in Patients with Chronic Renal-Failure and in Renal-Transplant Recipients. Brit Med J 4, 432-434 (1975). 59 Hensley, P. J. et al. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PloS one 9, e86238, doi:10.1371/journal.pone.0086238 (2014). 60 Sakamoto, S., Schwarze, S. Kyprianou, N. Anoikis disruption of focal adhesion-Akt signaling impairs renal cell carcinoma. European urology 59, 734-744, doi:10.1016/j.eururo.2010.12.038 (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53147 | - |
dc.description.abstract | 肝癌(liver cancer)是全球發生率及死亡率高的癌症之一。而其中最常見的原發性肝癌為肝細胞癌 (Hepatocellular carcinoma, HCC),而晚期肝癌病患的整體存活期小於8個月。蕾莎瓦(Sorafenib)是目前唯一經過美國食品藥物管理局 (Food and Drug Administration, FDA)認證核可針對晚期肝癌病患的標靶治療藥物。但是,近年來,根據越來越多臨床報導及文獻指出,接受蕾莎瓦治療的病人逐漸有抗藥性的產生。 在本實驗室之前的研究,已證實不論是在動物模型或是細胞模型上,EphA2都有高度表達的現象。而我們發現在HuH7R細胞中,EphA2的S897磷酸化位點會因為Akt的高度磷酸化而被活化。為了雙向證明EphA2的對蕾莎瓦抗藥性的重要,我們利用RNA干擾使EphA2的基因表現沉默化,發現在無法表達EphA2情形下的HuH7R細胞可以回復對蕾莎瓦藥物的敏感度。 所以我們假設EphA2的高度表達對HuH7R細胞產生蕾莎瓦抗性是很重要的角色。我們藉由對小量喹唑啉衍生物的篩選,經過細胞存活率的測試後,發現三個具有潛力的小分子藥物:prazosin, DZ-50 和 DZ-3。接著,我們想探討小分子藥物對HuH7R細胞的影響。發現prazosin抑制EphA2和Akt的磷酸化的程度最劇。在功能方面,三個小分子藥物都能引起癌細胞凋亡並且抑制細胞移動的能力。 根據引起EphA2內化的實驗中,prazosin對HuH7R細胞EphA2的表現量降低最多,顯示prazosin最有潛力與EphA2產生直接的交互作用,並引起EphA2路徑的細胞死亡,進而克服蕾莎瓦的抗藥性。我們接著進行藥物共同處理測試,從結果顯示,在HuH7R細胞中只有prazosin能與蕾莎瓦產生協同作用,表示prazosin可以回復對蕾莎瓦的靈敏度,並且逆轉在抗藥性肝癌細胞株中的蕾莎瓦抗藥性。我們更進一步探討此三種小分子藥物對EphA2結合力的偵測。利用電腦接合模擬及表面電漿共振生物感測儀(SPR)分析,從兩個實驗結果發現DZ-50和DZ-3針對EphA2的結合能力沒有比prazosin來得好。 綜合以上研究,我們知道對於抗癌研究中,EphA2是個很好的標的蛋白,但是透過細胞存活率測試的方式篩選出來的小分子藥物對EphA2的專一性並不是很好,如DZ-50和DZ-3。為了更優化我們的篩藥系統,我們建立了高通量藥物篩選平台來找尋針對EphA2專一性高的小分子藥物。而我們利用先前篩選過的少量喹唑啉(Quinazoline)衍生物進行測試,發現prazosin仍是針對抑制EphA2最有潛力的小分子藥物,並且能引發透過EphA2路徑的細胞死亡,並回復具抗藥性肝癌細胞株其對蕾莎瓦的敏感性。 | zh_TW |
dc.description.abstract | Liver cancer is one of the most malignant cancers in the world. The most frequent liver cancer is hepatocellular carcinoma (HCC), and the overall survival rate of advanced HCC patient is shorter than 8 months. Sorafenib is the only drug that U.S. FDA approved to treat advanced HCC patients. However, many clinical researches showed that most of the HCC patients who received sorafenib therapy eventually resulted in drug resistant to sorafenib. From previous study of our lab, we found that EphA2 overexpressed in HuH7R cells both in vitro and in vivo. We also found that EphA2 S897 phosphoylated by AKT kinase in HuH7R cells. To prove the important relevance between EphA2 and sorafenib drug resistant, we found that knockdown of EphA2 recovers the sensitivity of HuH7R cells to sorafenib. We hypothesized the EphA2 up-regulation is important to sorafenib resistance in HuH7R cells. We screened several Quinazoline-based compounds by MTT assay and revealed that prazosin, DZ-50 and DZ-3 are the three most potential candidates. Next, we treated potential candidates to examine the efficacy in HuH7R cells. We found that the phosphorylation of EphA2 (Ser897) and Akt (Ser473) decreased by Prazosin comparing than DZ-50 and DZ-3. All of prazosin, DZ-50 and DZ-3 can induce cell apoptosis and inhibit cell migration ability. According to the internalization assay, prazosin decreased EphA2 expression on HuH7R cell membrane significantly, indicated that prazosin potentially involved in direct interaction with EphA2, activated ligand-dependent pathway and induced EphA2-mediated cell death to overcome sorafenib drug resistance.We also examine the anti-cancer effect of drug combined treatment. As the result, combined treatment of prazosin and sorafenib has the best synergistic effect on HuH7R cells, suggests that prazosin can recover the sensitivity to sorafenib and overcome drug resistance in sorafenib-resistant HCC model. To further detect the binding affinity of 3 compounds and EphA2, we analyze their interaction by molecular docking and SPR assay. Both results indicated that the binding affinity of DZ-50 and DZ-3 to EphA2 show no significant improvement compared to that of prazosin. Based on the above result, EphA2 is a good target of anticancer treatment, but the candidates selected by cell viability screening are not that specific to EphA2, such as DZ-50 and DZ-3. To optimize the screening system, we establish a high-content drug screening platform by high-content analysis ( HCA ) to discover EphA2 specific small molecules. And HCA of Quinazoline-based compounds reveals prazosin is a best potential candidate to induce EphA2-mediated cell death and recovers the sensitivity of sorafenib in resistant Huh7 cell lines. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:47:13Z (GMT). No. of bitstreams: 1 ntu-104-R02442020-1.pdf: 8763875 bytes, checksum: b687451130beb8e057ce8e9f34e98f02 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書i 謝誌ii 中文摘要vi Abstract viii 縮寫x 目錄xiii 圖目錄xvi 第一章 導論1 第一節 肝癌1 1.1 肝癌之流行病學1 1.2 肝癌癌化過程 2 1.3 肝癌的分期2 1.4 肝癌的臨床治療3 第二節 蕾莎瓦(Sorafenib) 4 2.1 作用機制4 2.2 蕾莎瓦抗藥性的產生6 第三節 EPH receptor A2的重要性10 3.1 EPH receptor A2的介紹 10 3.2 EphA2與癌症之關係12 3.3 EphA2的作用機制13 第四節 Quinazoline衍生物 16 4.1 Quinazoline衍生物定義16 4.2 Quinazoline衍生物與Akt路徑之關聯性16 4.3 Quinazoline衍生物有與EphA2產生交互作用之潛力16 第五節 高通量細胞影像分析法17 5.1 高通量細胞影像分析法介紹17 5.2 建立EphA2之篩藥平台18 第六節 研究動機 19 第二章 實驗材料 21 第一節 細胞株 21 第二節 藥品 21 第三節 試劑組 23 第四節 抗體 23 第五節 重要儀器裝置24 第六節 軟體25 第三章 實驗方法26 第一節 肝細胞癌細胞株的培養26 1.1 培養基(Medium)配置 26 1.2 細胞的培養26 1.3 細胞計數26 第二節 細胞存活率分析 (MTT assay)27 2.1 測定原理 27 2.2 試劑準備 27 2.3 測定步驟 28 第三節 訊息傳遞的研究28 3.1 細胞加藥處理 28 第四節 細胞凋亡之偵測29 4.1 細胞加藥處理 29 第五節 蛋白質分析法30 5.1 細胞樣品處理 30 5.2 蛋白質濃度測定 (BCA protein assay)30 5.3 十二烷基磺酸鈉-聚丙醯胺凝膠電泳法 (SDS-PAGE)32 5.4 西方墨點法 (Western blot)35 第六節 細胞傷口癒合實驗(Wound healing assay)37 6.1 細胞樣品製備 37 6.2 數據量化38 第七節 藥物合併指數定理(The Combination Index Theorem)38 7.1 計算原理 38 7.2 細胞樣品製備 38 7.3 藥物準備 38 7.4 藥物濃度 39 7.5 藥物效用(Fa值)計算 40 7.6 軟體分析 40 第八節 電腦模擬小分子藥物與蛋白質結合能力(Molecular docking)41 8.1 小分子藥物及蛋白質之結構來源41 8.2 電腦模擬及運算41 第九節 表面電漿共振生物感測儀(Surface Plasmon Resonance, SPR)41 9.1 偵測原理41 9.2 樣品及溶劑製備42 9.3 機器操作43 9.4 軟體分析及KD值計算43 第十節 受體內化程度分析(Internalization assay)44 10.1 細胞加藥處理44 10.2 免疫螢光染色 (Immunofluorescence cell staining)44 10.3 數據量化45 第十一節 高通量細胞影像分析(High-content analysis,HCA)46 11.1 測定原理46 11.2 細胞樣品製備46 11.3 細胞影像分析50 第四章 實驗結果52 第一節 HuH7 與HuH7R細胞兩者對蕾莎瓦藥物靈敏度與細胞型態差異之比較52 第二節 HuH7 與HuH7R細胞間蛋白質表現之差異 52 第三節 探討EphA2表現量與蕾莎瓦藥物靈敏度之重要關聯性53 第四節 篩選針對EphA2有抑制效果之小分子藥物 54 第五節 EphA2與Akt路徑之交互作用55 5.1 EphA2與Akt之轉換機制 55 5.2 小分子藥物對EphA2路徑之影響55 第六節 Prazosin、DZ–50、DZ–3抑制EphA2後之功能分析與比較56 6.1 探討三種小分子藥物引起細胞凋亡之機制56 6.2 探討三種小分子藥物對HuH7R細胞移動能力之影響56 6.3 探討三種小分子藥物引起EphA2受體去敏感化的能力57 第七節 探討Prazosin、DZ–50、DZ–3與蕾莎瓦共同使用之效果58 第八節 Prazosin、DZ–50、DZ–3與EphA2結合能力之探討 59 8.1 以分子模擬(Molecular modeling) 預測小分子藥物與EphA2結合能力59 8.2 以表面電漿共振生物感測儀(SPR) 偵測小分子藥物與EphA2結合能力60 第九節 利用高通量細胞影像分析法建立針對EphA2之篩藥平臺60 9.1 設計EphA2之篩藥平臺 60 9.2 建立穩定表現EphA2之HEK293A細胞株61 9.3 建立針對EphA2之篩藥平臺並篩選可引起具蕾莎瓦抗藥性之肝癌 細胞死亡的小分子藥物62 第五章 討論64 第一節 EphA2作為抗癌藥物目標之應用 64 第二節 Quinazoline衍生物應用於癌症治療 67 第三節 探討DZ-3及 DZ-50可能的抗癌機制 68 第四節 以電腦接合模擬與SPR了解藥物針對EphA2結合力的重要性 69 第五節 建立針對EphA2高通量快速篩藥平台之重要性及應用 69 第六章 參考文獻 71 圖 77 附錄 100 | |
dc.language.iso | zh-TW | |
dc.title | 鑑定蕾莎瓦抗藥性肝癌細胞株中酪胺酸激酶EphA2受體之新型致效劑 | zh_TW |
dc.title | Identification novel agonists of EphA2 in sorafenib-resistant HCC cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顧記華(Jih-Hwa Guh),徐志宏(Chih-Hung Hsu),黃楓婷(Feng-Ting Huang) | |
dc.subject.keyword | 肝細胞癌,酪胺酸激?EphA2受體,?唑?,高通量細胞影像分析,篩藥, | zh_TW |
dc.subject.keyword | HCC,EphA2,Quinazoline,High-content analysis,Drug screening, | en |
dc.relation.page | 104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 8.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。