請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53145
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃建璋 | |
dc.contributor.author | Chih-Hao Wang | en |
dc.contributor.author | 王致皓 | zh_TW |
dc.date.accessioned | 2021-06-15T16:47:05Z | - |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-10 | |
dc.identifier.citation | [1] M. T. Hasan, 'Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors,' Ph.D. dissertation, University of Fukui, Fukui, Japan, (2013).
[2] M. A. Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olson, 'High electron mobility GaN/AlxGa1−xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition,' Applied Physics Letters 58, 2408-2410 (1991). [3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, 'Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,' Journal of Applied Physics 85, 3222-3233 (1999). [4] E. Zürich, 'High Electron Mobility Transistors (HEMT),' http://www.mwe.ee.ethz.ch/de/about-mwe-group/forschung/vision-und-ziele/high-electron-mobility-transistors-hemt.html. [5] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, 'Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,' Electron Devices, IEEE Transactions on 54, 3393-3399 (2007). [6] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, Wu, x, and J. rfl, 'Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer,' in Power Semiconductor Devices & IC's (ISPSD), 2010 22nd International Symposium on(2010), pp. 347-350. [7] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Wurfl, 'Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer,' in Power Semiconductor Devices and ICs (ISPSD), 2011 IEEE 23rd International Symposium on(2011), pp. 239-242. [8] S. L. Selvaraj, K. Nagai, and T. Egawa, 'MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN cap layer with high breakdown,' in Device Research Conference (DRC), 2010(2010), pp. 135-136. [9] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, 'A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,' in Electron Devices Meeting (IEDM), 2009 IEEE International(2009), pp. 1-4. [10] C. Wanjun, W. King-Yuen, and K. J. Chen, 'Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,' in Electron Devices Meeting, 2008. IEDM 2008. IEEE International(2008), pp. 1-4. [11] W. Ronghua, P. Saunier, X. Xiu, L. Chuanxin, G. Xiang, G. Shiping, G. Snider, P. Fay, D. Jena, and X. Huili, 'Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance,' Electron Device Letters, IEEE 31, 1383-1385 (2010). [12] T. Oka, and T. Nozawa, 'AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,' Electron Device Letters, IEEE 29, 668-670 (2008). [13] K. S. Boutros, S. Burnham, D. Wong, K. Shinohara, B. Hughes, D. Zehnder, and C. McGuire, 'Normally-off 5A/1100V GaN-on-silicon device for high voltage applications,' in Electron Devices Meeting (IEDM), 2009 IEEE International(2009), pp. 1-3. [14] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, 'The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,' Electron Devices, IEEE Transactions on 48, 560-566 (2001). [15] B. Jogai, 'Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,' Journal of Applied Physics 93, 1631 (2003). [16] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, 'Current Collapse Suppression by Gate Field-Plate in AlGaN/GaN HEMTs,' Electron Device Letters, IEEE 34, 1379-1381 (2013). [17] H. Huolin, Y. C. Liang, G. S. Samudra, C. Ting-Fu, and H. Chih-Fang, 'Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs,' Power Electronics, IEEE Transactions on 29, 2164-2173 (2014). [18] Y. Guohao, W. Yue, C. Yong, D. Zhihua, Z. Chunhong, and Z. Baoshun, 'Dynamic Characterizations of AlGaN/GaN HEMTs With Field Plates Using a Double-Gate Structure,' Electron Device Letters, IEEE 34, 217-219 (2013). [19] T. Katsuno, M. Kanechika, K. Itoh, K. Nishikawa, T. Uesugi, and T. Kachi, 'Improvement of Current Collapse by Surface Treatment and Passivation Layer in p-GaN Gate GaN High-Electron-Mobility Transistors,' Japanese Journal of Applied Physics 52, 04CF08 (2013). [20] H. Injun, K. Jongseob, C. Soogine, C. Hyun-Sik, H. Sun-Kyu, O. Jaejoon, S. Jai Kwang, and U. I. Chung, 'Impact of Channel Hot Electrons on Current Collapse in AlGaN/GaN HEMTs,' Electron Device Letters, IEEE 34, 1494-1496 (2013). [21] H. Injun, K. Jongseob, C. Hyuk Soon, C. Hyoji, L. Jaewon, K. Kyung Yeon, P. Jong-Bong, L. Jae Cheol, H. Jongbong, O. Jaejoon, S. Jaikwang, and U. I. Chung, 'p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,' Electron Device Letters, IEEE 34, 202-204 (2013). [22] H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, 'Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,' Journal of Vacuum Science & Technology B 21, 1844-1855 (2003). [23] Z. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, 'Electron diffusion length and lifetime in p-type GaN,' Applied Physics Letters 73, 3276-3278 (1998). [24] T. Kimura, R. Shigemasa, T. Ohshima, and S. Nishi, 'Shift in Threshold Voltage and Schottky Barrier Height of Molybdenum Gate Gallium Arsenide Field Effect Transistors after High Forward Gate Current Test,' Japanese Journal of Applied Physics 35, L883 (1996). [25] S. HAŁAS, '100 years of work function,' Materials Science-Poland Vol. 24., No. 4, (2006). [26] Y.-R. Wu, M. Singh, and J. Singh, 'Gate leakage suppression and contact engineering in nitride heterostructures,' Journal of Applied Physics 94, 5826-5831 (2003). [27] P. Javorka, J. Bernat, A. Fox, M. Marso, H. Luth, and P. Kordos, 'Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance,' Electronics Letters 39, 1155-1157 (2003). [28] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, 'Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,' Electron Device Letters, IEEE 24, 421-423 (2003). [29] Z. Weimin, X. Zhuxian, Z. Zheyu, F. Wang, L. M. Tolbert, and B. J. Blalock, 'Evaluation of 600 V cascode GaN HEMT in device characterization and all-GaN-based LLC resonant converter,' in Energy Conversion Congress and Exposition (ECCE), 2013 IEEE(2013), pp. 3571-3578. [30] A. M. Wells, M. J. Uren, R. S. Balmer, K. P. Hilton, T. Martin, and M. Missous, 'Direct demonstration of the ‘virtual gate’ mechanism for current collapse in AlGaN/GaN HFETs,' Solid-State Electronics 49, 279-282 (2005). [31] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, 'Comparative study of drain-current collapse in AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC,' Applied Physics Letters 81, 3073-3075 (2002). [32] S. Arulkumaran, T. Hibino, T. Egawa, and H. Ishikawa, 'Current collapse-free i-GaN/AlGaN/GaN high-electron-mobility transistors with and without surface passivation,' Applied Physics Letters 85, 5745-5747 (2004). [33] N. G. Weimann, M. J. Manfra, and T. Wachtler, 'Unpassivated AlGaN-GaN HEMTs with minimal RF dispersion grown by plasma-assisted MBE on semi-insulating 6H-SiC substrates,' Electron Device Letters, IEEE 24, 57-59 (2003). [34] L. Yi-Wei, L. Yu-Syuan, L. Hou-Cheng, H. Yen-Chieh, and S. S. H. Hsu, 'Drain E-Field Manipulation in AlGaN/GaN HEMTs by Schottky Extension Technology,' Electron Devices, IEEE Transactions on 62, 519-524 (2015). [35] K. Hayashi, Y. Yamaguchi, T. Oishi, H. Otsuka, K. Yamanaka, M. Nakayama, and Y. Miyamoto, 'Mechanism Study of Gate Leakage Current for AlGaN/GaN High Electron Mobility Transistor Structure Under High Reverse Bias by Thin Surface Barrier Model and Technology Computer Aided Design Simulation,' Japanese Journal of Applied Physics 52, 04CF12 (2013). [36] S. Sudharsanan, and S. Karmalkar, 'Modeling of the reverse gate leakage in AlGaN/GaN high electron mobility transistors,' Journal of Applied Physics 107, 064501 (2010). [37] D. Mahaveer Sathaiya, and S. Karmalkar, 'Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors,' Journal of Applied Physics 99, 093701 (2006). [38] X. Dong, K. K. Chu, J. A. Diaz, M. Ashman, J. J. Komiak, L. M. Pleasant, C. Creamer, K. Nichols, K. H. G. Duh, P. M. Smith, P. C. Chao, L. Dong, and P. D. Ye, '0.1-μm Atomic Layer Deposition Al2O3 Passivated InAlN/GaN High Electron-Mobility Transistors for E-Band Power Amplifiers,' Electron Device Letters, IEEE 36, 442-444 (2015). [39] T. Zhikai, J. Qimeng, L. Yunyou, H. Sen, Y. Shu, T. Xi, and K. J. Chen, '600-V Normally Off SiNx/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse,' Electron Device Letters, IEEE 34, 1373-1375 (2013). [40] C. Bo-Yi, L. Han-Yin, H. Wei-Chou, L. Ching-Sung, W. Yu-Sheng, S. Wen-Ching, W. Sung-Yen, and Y. Sheng-Min, 'Al2O3-Passivated AlGaN/GaN HEMTs by Using Nonvacuum Ultrasonic Spray Pyrolysis Deposition Technique,' Electron Device Letters, IEEE 35, 903-905 (2014). [41] T. Kawanago, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, K. Natori, and H. Iwai, 'Gate Technology Contributions to Collapse of Drain Current in AlGaN/GaN Schottky HEMT,' Electron Devices, IEEE Transactions on 61, 785-792 (2014). [42] I. Krylov, L. Kornblum, A. Gavrilov, D. Ritter, and M. Eizenberg, 'Experimental evidence for the correlation between the weak inversion hump and near midgap states in dielectric/InGaAs interfaces,' Applied Physics Letters 100, 173508 (2012). [43] S. Huang, S. Yang, J. Roberts, and K. J. Chen, 'Threshold Voltage Instability in Al2O3/GaN/AlGaN/GaN Metal–Insulator–Semiconductor High-Electron Mobility Transistors,' Japanese Journal of Applied Physics 50, 110202 (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53145 | - |
dc.description.abstract | III-V族材料氮化鎵近年來應用在功率元件越來越被重視,其中氮化鋁鎵/氮化鎵高電子遷移率電晶體更為代表。高能帶的材料特性能使其應用於高電壓電子元件及高效率電源轉換系統;異質接合結構所產生的大量二維電子氣,更能提供元件大電流、低阻抗之特性。本論文致力於大電流氮化鎵高電子遷移率電晶體之發展以及其動態電特性分析與可靠度探討。
在本論文中,根據先前氮化鋁鎵/氮化鎵高電子遷移率電晶體的實驗經驗,利用p型氮化鎵覆蓋層達到增強型操作元件。我們探討不同閘極金屬對於p型氮化鎵增強型高電子遷移率電晶體之影響,於p型氮化鎵覆蓋層之結構下,可以利用選擇不同功函數之閘極金屬作為再調整電晶體電特性之依據。除此之外,本文發展大尺寸增強型氮化鎵高電子遷移率電晶體以作為大電流功率元件。這些功率元件是由多指狀結構所製成,文中所呈現的兩種增強型功率元件分別是由空乏型大尺寸氮化鎵高電子遷移率電晶體串接矽功率元件以及p型氮化鎵覆蓋層架構。兩種功率元件都能操作達6安培的輸出電流。 本論文同時也探討電流坍塌現象於p型氮化鎵高電子遷移率電晶體之影響。利用電漿輔助化學氣相沉積系統所沉積出的二氧化矽薄膜作為電晶體的鈍化層,藉此探討電流坍塌現象的影響與機制。實驗發現擁有鈍化層的電晶體有較優異的電流坍塌抗性。別於傳統文獻所使用的表面缺陷修復或者增強閘極的控制電場之方式,本文所提出另一種嶄新的方式可以有效降低流坍塌現象。鈍化層的內部缺陷可以作為一個額外的電子累積空間,藉此,二維電子氣之載子便不會被所累積在p型氮化鎵覆蓋層的電子影響,電流坍塌現象便不會產生。 | zh_TW |
dc.description.abstract | In recent years, the application of gallium nitride (GaN) material have become more and more important, especially in power electronics. Among them, GaN-based high electron mobility transistor (HEMT) is a promising power device. Due to the wide-band-gap material and two dimensional electron gas (2DEG) channel, GaN HEMTs have a high breakdown voltage, large operating output current and low on-resistance. In this thesis, large-area GaN HEMTs with high output current are demonstrated; the electrical characteristics and reliability on performances are also investigated.
Based on our previous experience of GaN HEMT, enhancement-mode (E-mode) HEMT are achieved by p-type doped GaN cap AlGaN/GaN structure. To optimize the performance of devices, the impact of various gate metals is discussed. Then, large-area GaN HEMTs as power device are investigated. The large-area HEMT is a multi-finger structure and two types of E-mode large-area HEMTs are fabricated, including cascode HEMT and p-GaN HEMT. Both of them can be operated with a high output drain current of more than 6 A. However, the phenomenon of current collapse remains a critical problem in GaN HEMT. In this work, the phenomenon of current collapse in E-mode HEMT is investigated. Dynamic output characteristics are analyzed between the conventional p-GaN HEMT and the HEMT with PECVD SiO2 as the passivation. Unlike general literatures that remove the interface defects to ease current collapse or enhance the control of gate electrode, this work provides another consideration that an extra electron-accumulating space is created by passivation. This can provide a second region where the electrons would not deplete the 2DEG carriers. The effect of current collapse can be eliminated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:47:05Z (GMT). No. of bitstreams: 1 ntu-104-R02941015-1.pdf: 6913889 bytes, checksum: 776a14ceb594057310179070a1332f45 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 IV Abstract V Contents VII List of Figures X Chapter 1 Introduction 1 1.1 AlGaN/GaN HEMTs 1 1.2 Phenomenon of Current Collapse 5 1.3 Thesis Outline 8 Chapter 2 Single Structure GaN-based HEMTs 9 2.1 Introduction 9 2.2 Development of D-mode AlGaN/GaN HEMTs 9 2.2.1 Fabrication 9 2.2.2 Characteristics and Results Discussion 10 2.3 Development of E-mode AlGaN/GaN HEMTs 12 2.3.1 Epi-structure Design and Fabrication 12 2.3.2 Characteristics and Results Discussion 14 2.4 The Impact of Gate Metals on the Performance of E-mode HEMTs 18 2.4.1 Electrical Transfer Characteristics 19 2.4.2 Output Characteristics 20 2.4.3 Discussion of Gate Metals in Band Diagram 21 2.5 Summary 22 Chapter 3 Large-area AlGaN/GaN HEMTs 23 3.1 Introduction 23 3.2 Comparison of Various Passivation Layers 24 3.2.1 Fabrication 24 3.2.2 Results and Discussion 25 3.3 Development of Large-area D-mode HEMTs 27 3.3.1 Fabrication 27 3.3.2 Characteristics of Large-area D-mode HEMTs 29 3.3.3 Cascode HEMTs 31 3.4 Development of Large-area p-GaN AlGaN/GaN HEMTs 33 3.4.1 Fabrication 33 3.4.2 Characteristics and Results Discussion 35 3.5 Packaging 37 3.6 Summary 39 Chapter 4 Investigations of Current Collapse in E-mode HEMTs 40 4.1 Introduction 40 4.2 Fabrication 41 4.3 Configuration of Dynamic Testing System 42 4.4 Results and Discussion 44 4.4.1 Transfer and Output Characteristics 44 4.4.2 Dynamic Characteristics 47 4.4.3 C-V Characteristics 49 4.4.4 Mechanism of current collapse suppression 52 4.5 Summary 54 Chapter 5 Conclusion 55 Reference 57 | |
dc.language.iso | en | |
dc.title | 氮化鎵高電子遷移率電晶體其電特性分析及可靠度探討 | zh_TW |
dc.title | Investigation of Electrical Characteristics and Reliability in GaN-based High Electron Mobility Transistors | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊志忠,賴韋志,吳肇欣,吳育任 | |
dc.subject.keyword | 高電子遷移率電晶體,p型氮化鎵覆蓋層,高功率元件,電流坍塌現象, | zh_TW |
dc.subject.keyword | GaN HEMT,E-mode,p-GaN cap layer,power device,current collapse, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。