請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53124完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴逸儒(I-Rue Lai) | |
| dc.contributor.author | Er-Yen Yen | en |
| dc.contributor.author | 顏爾言 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:45:49Z | - |
| dc.date.available | 2017-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | Akagi, T., Shiraishi, N. and Kitano, S. (2011). 'Lymph node metastasis of gastric cancer.' Cancers (Basel) 3(2): 2141-2159.
Ananth, S., Knebelmann, B., Gruning, W., Dhanabal, M., Walz, G., Stillman, I. E. and Sukhatme, V. P. (1999). 'Transforming growth factor beta1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma.' Cancer Res 59(9): 2210-2216. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. and Powrie, F. (1999). 'An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation.' The Journal of experimental medicine 190(7): 995-1004. Cai, Z., Zhang, W., Yang, F., Yu, L., Yu, Z., Pan, J., Wang, L., Cao, X. and Wang, J. (2012). 'Immunosuppressive exosomes from TGF-beta1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells.' Cell Res 22(3): 607-610. Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R. and Ley, T. J. (2007). 'Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance.' Immunity 27(4): 635-646. Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G. and Wahl, S. M. (2003). 'Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3.' J Exp Med 198(12): 1875-1886. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. and Tabi, Z. (2007). 'Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2.' Cancer Res 67(15): 7458-7466. Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., Cross, R., Sehy, D., Blumberg, R. S. and Vignali, D. A. (2007). 'The inhibitory cytokine IL-35 contributes to regulatory T-cell function.' Nature 450(7169): 566-569. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W. and Geuze, H. J. (2000). 'Exosome: from internal vesicle of the multivesicular body to intercellular signaling device.' J Cell Sci 113 Pt 19: 3365-3374. Desruisseau, S., Ghazarossian-Ragni, E., Chinot, O. and Martin, P. M. (1996). 'Divergent effect of TGFbeta1 on growth and proteolytic modulation of human prostatic-cancer cell lines.' Int J Cancer 66(6): 796-801. Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J., Hole, P., Carr, B., Redman, C. W., Harris, A. L., Dobson, P. J., Harrison, P. and Sargent, I. L. (2011). 'Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis.' Nanomedicine 7(6): 780-788. Esquerré, M., Tauzin, B., Guiraud, M., Müller, S., Saoudi, A. and Valitutti, S. (2008). 'Human regulatory T cells inhibit polarization of T helper cells toward antigen-presenting cells via a TGF-β-dependent mechanism.' Proceedings of the National Academy of Sciences 105(7): 2550-2555. Francis, K. and Palsson, B. O. (1997). 'Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion.' Proceedings of the National Academy of Sciences 94(23): 12258-12262. Fu, S., Zhang, N., Yopp, A. C., Chen, D., Mao, M., Chen, D., Zhang, H., Ding, Y. and Bromberg, J. S. (2004). 'TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors.' Am J Transplant 4(10): 1614-1627. Gondek, D. C., Lu, L.-F., Quezada, S. A., Sakaguchi, S. and Noelle, R. J. (2005). 'Cutting edge: contact-mediated suppression by CD4+ CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism.' The Journal of Immunology 174(4): 1783-1786. Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., Yan, Y., Mao, F., Zhao, C., Shi, Y. and Xu, W. (2012). 'Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-beta/Smad pathway.' PLoS One 7(12): e52465. Hahn, S. A., Schutte, M., Hoque, A. S., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J. and Hruban, R. H. (1996). 'DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1.' Science 271(5247): 350-353. Hawinkels, L. J., Verspaget, H. W., van Duijn, W., van der Zon, J. M., Zuidwijk, K., Kubben, F. J., Verheijen, J. H., Hommes, D. W., Lamers, C. B. and Sier, C. F. (2007). 'Tissue level, activation and cellular localisation of TGF-beta1 and association with survival in gastric cancer patients.' Br J Cancer 97(3): 398-404. Hood, J. L., San, R. S. and Wickline, S. A. (2011). 'Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis.' Cancer Res 71(11): 3792-3801. Ichihara, F., Kono, K., Takahashi, A., Kawaida, H., Sugai, H. and Fujii, H. (2003). 'Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers.' Clinical Cancer Research 9(12): 4404-4408. Kawaida, H., Kono, K., Takahashi, A., Sugai, H., Mimura, K., Miyagawa, N., Omata, H., Ooi, A. and Fujii, H. (2005). 'Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer.' J Surg Res 124(1): 151-157. Kim, J.-P., Lee, J.-H., Kim, S.-J., Yu, H.-J. and Yang, H.-K. (1998). 'Clinicopathologic characteristics and prognostic factors in 10 783 patients with gastric cancer.' Gastric Cancer 1(2): 125-133. Kono, K., Kawaida, H., Takahashi, A., Sugai, H., Mimura, K., Miyagawa, N., Omata, H. and Fujii, H. (2006). 'CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers.' Cancer Immunol Immunother 55(9): 1064-1071. Lai, C. P., Mardini, O., Ericsson, M., Prabhakar, S., Maguire, C. A., Chen, J. W., Tannous, B. A. and Breakefield, X. O. (2014). 'Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter.' ACS nano 8(1): 483-494. Lane, R. E., Korbie, D., Anderson, W., Vaidyanathan, R. and Trau, M. (2015). 'Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing.' Sci Rep 5: 7639. Levings, M. K., Sangregorio, R., Sartirana, C., Moschin, A. L., Battaglia, M., Orban, P. C. and Roncarolo, M.-G. (2002). 'Human CD25+ CD4+ T suppressor cell clones produce transforming growth factor β, but not interleukin 10, and are distinct from type 1 T regulatory cells.' The Journal of experimental medicine 196(10): 1335-1346. Li, Q., Li, Q., Chen, J., Liu, Y., Zhao, X., Tan, B., Ai, J., Zhang, Z., Song, J. and Shan, B. (2013). 'Prevalence of Th17 and Treg cells in gastric cancer patients and its correlation with clinical parameters.' Oncol Rep 30(3): 1215-1222. Mathivanan, S., Fahner, C. J., Reid, G. E. and Simpson, R. J. (2011). 'ExoCarta 2012: database of exosomal proteins, RNA and lipids.' Nucleic Acids Research 40(D1): D1241-D1244. Mizukami, Y., Kono, K., Kawaguchi, Y., Akaike, H., Kamimura, K., Sugai, H. and Fujii, H. (2008). 'CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer.' Int J Cancer 122(10): 2286-2293. Moo-Young, T. A., Larson, J. W., Belt, B. A., Tan, M. C., Hawkins, W. G., Eberlein, T. J., Goedegebuure, P. S. and Linehan, D. C. (2009). 'Tumor derived TGF-Beta mediates conversion of CD4+ Foxp3+ regulatory T cells in a murine model of pancreas cancer.' Journal of immunotherapy (Hagerstown, Md.: 1997) 32(1). Nakamura, K., Kitani, A., Fuss, I., Pedersen, A., Harada, N., Nawata, H. and Strober, W. (2004). 'TGF-β1 plays an important role in the mechanism of CD4+ CD25+ regulatory T cell activity in both humans and mice.' The Journal of Immunology 172(2): 834-842. Nakamura, K., Kitani, A. and Strober, W. (2001). 'Cell contact–dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface–bound transforming growth factor β.' The Journal of experimental medicine 194(5): 629-644. Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J. i., Heldin, C. H. and Miyazono, K. (1997). 'TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4.' The EMBO journal 16(17): 5353-5362. Oderup, C., Cederbom, L., Makowska, A., Cilio, C. M. and Ivars, F. (2006). 'Cytotoxic T lymphocyte antigen‐4‐dependent down‐modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T‐cell‐mediated suppression.' Immunology 118(2): 240-249. Ormandy, L. A., Hillemann, T., Wedemeyer, H., Manns, M. P., Greten, T. F. and Korangy, F. (2005). 'Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma.' Cancer research 65(6): 2457-2464. R.Walker, M., Kasprowicz, D. J., Gersuk, V. H., Bènard, A., Van Landeghen, M., Buckner, J. H. and Ziegler, S. F. (2003). 'Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells.' Journal of Clinical Investigation 112(9): 1437-1443. Sanderson, M. P., Keller, S., Alonso, A., Riedle, S., Dempsey, P. J. and Altevogt, P. (2008). 'Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloprotease‐dependent ectodomain shedding and exosome secretion.' Journal of cellular biochemistry 103(6): 1783-1797. Schmidt, A., Oberle, N., Weiss, E.-M., Vobis, D., Frischbutter, S., Baumgrass, R., Falk, C. S., Haag, M., Brügger, B. and Lin, H. (2011). 'Human Regulatory T Cells Rapidly Suppress T Cell Receptor–Induced Ca2+, NF-κB, and NFAT Signaling in Conventional T Cells.' Science signaling 4(204): ra90-ra90. Seelenmeyer, C., Stegmayer, C. and Nickel, W. (2008). 'Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles.' FEBS letters 582(9): 1362-1368. Sharma, S., Gillespie, B. M., Palanisamy, V. and Gimzewski, J. K. (2011). 'Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes.' Langmuir 27(23): 14394-14400. Simpson, R. J., Jensen, S. S. and Lim, J. W. (2008). 'Proteomic profiling of exosomes: current perspectives.' Proteomics 8(19): 4083-4099. Smyth, M. J., Teng, M. W., Swann, J., Kyparissoudis, K., Godfrey, D. I. and Hayakawa, Y. (2006). 'CD4+ CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer.' The Journal of Immunology 176(3): 1582-1587. Stoorvogel, W., Kleijmeer, M. J., Geuze, H. J. and Raposo, G. (2002). 'The biogenesis and functions of exosomes.' Traffic 3(5): 321-330. Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. and Whiteside, T. L. (2010). 'Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg).' PLoS One 5(7): e11469. Thery, C., Zitvogel, L. and Amigorena, S. (2002). 'Exosomes: composition, biogenesis and function.' Nat Rev Immunol 2(8): 569-579. Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G. and Rivoltini, L. (2006). 'Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes.' Cancer Res 66(18): 9290-9298. van der Pol, E., Hoekstra, A. G., Sturk, A., Otto, C., van Leeuwen, T. G. and Nieuwland, R. (2010). 'Optical and non-optical methods for detection and characterization of microparticles and exosomes.' J Thromb Haemost 8(12): 2596-2607. von Andrian, U. H. and Mempel, T. R. (2003). 'Homing and cellular traffic in lymph nodes.' Nat Rev Immunol 3(11): 867-878. Wieckowski, E. U., Visus, C., Szajnik, M., Szczepanski, M. J., Storkus, W. J. and Whiteside, T. L. (2009). 'Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes.' J Immunol 183(6): 3720-3730. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. and Massague, J. (1994). 'Mechanism of activation of the TGF-beta receptor.' Nature 370(6488): 341-347. Yamashita, T., Kamada, H., Kanasaki, S., Maeda, Y., Nagano, K., Abe, Y., Inoue, M., Yoshioka, Y., Tsutsumi, Y., Katayama, S., Inoue, M. and Tsunoda, S. (2013). 'Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis.' Pharmazie 68(12): 969-973. Yan, Z., Deng, X. and Friedman, E. (2001). 'Oncogenic Ki-ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor-β receptor III.' Journal of Biological Chemistry 276(2): 1555-1563. Yokota, T., Ishiyama, S., Saito, T., Teshima, S., Narushima, Y., Murata, K., Iwamoto, K., Yashima, R., Yamauchi, H. and Kikuchi, S. (2004). 'Lymph node metastasis as a significant prognostic factor in gastric cancer: a multiple logistic regression analysis.' Scandinavian Journal of Gastroenterology 39(4): 380-384. Zhang, H.-G., Liu, C., Su, K., Yu, S., Zhang, L., Zhang, S., Wang, J., Cao, X., Grizzle, W. and Kimberly, R. P. (2006). 'A membrane form of TNF-α presented by exosomes delays T cell activation-induced cell death.' The Journal of Immunology 176(12): 7385-7393. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53124 | - |
| dc.description.abstract | 外質體是大小介於30-150奈米的膜狀微囊泡,由上皮細胞、血小板和癌細胞等許多種類的細胞分泌。它存在於大部分的生物體液之中,並扮演著細胞間訊息傳遞的媒介。我們利用差速離心來分離胃癌病人周邊血液中的外質體,以研究它們在胃癌進展中所扮演的角色。首先,藉由穿透式電子顯微鏡和免疫電子顯微鏡觀察所游離外質體的外觀型態,也應用西方墨點法來確認他們會表現在外質體的標記物HSC70、CD9和CD63,並以奈米粒子追蹤分析(nanoparticle tracking analysis, NTA)進行外質體數量及大小分布的分析。接著,藉由免疫組織化學染色,確認胃癌組織中會表現轉化生長因子β1 (transforming growth factor-β1, TGF-β1)這種和癌症進展相關的分子。同時也利用酵素免疫分析法 (enzyme-linked immunosorbent assay, ELISA)來測量胃癌病人血液所分離出的外質體中TGF-β1的表現量。我們發現晚期胃癌病人的外質體會比早期胃癌或者沒有淋巴轉移的病人含有更多的TGF-β1。我們也利用了FOXP3的免疫組織化學染色來測量胃癌引流淋巴結中調節T細胞(regulatory T cell, Treg)的百分比。結果發現調節T細胞的比例,會和腫瘤大小、Borrmann type、淋巴轉移、腫瘤深度和胃癌分期等臨床病理參數有顯著相關。 除此之外,單位外質體所含TGF-β1的量,也被發現和淋巴結中的調節T細胞比例有相關性。這顯示胃癌病人的外質體所攜帶的TGF-β1也許和誘導調節T細胞的分化可能有所關連。關於胃癌外質體是否能誘導調節T細胞的分化,仍須進一步的實驗。 | zh_TW |
| dc.description.abstract | Exosomes are 30–150 nm nanovesicles secreted by various cells, including epithelial cells, platelets and tumor cells. Exosomes are present in most biological fluids and serve as mediators for cell-to-cell communication. To study their biological role in gastric cancer progression, the exosomes from the peripheral blood of gastric cancer patients were isolated by differential ultracentrifugation. The morphology of the isolated microvesicles was examined by Transmission electron microscopy (TEM) and immuno-EM. The expression of specific exosomal markers including HSC70, CD9 and CD63 in the microvesicles was confirmed by Western blot analysis. The number of exosomes was measured by means of Nanoparticle Tracking Analysis (NTA), which can determine the concentration and size of the isolated exosomes. The expression of transforming growth factor-β1 (TGF-β1), a molecule involved in cancer progression, was identified by immunohistochemical staining in gastric cancer. Furthermore, TGF-β1 levels in exosomes isolated from gastric cancer patients was determined by enzyme-linked immunosorbent assay (ELISA), which showed the amount TGF-β1 per exosome of advanced-stage patients was significantly higher than those in early stage or node-negative patients. We also examined the percentage of regulatory T (Treg) cells in draining lymph node by FOXP3 immunohistochemistry. Higher levels of Treg cells were significantly associated with larger tumor size, Borrmann types III and IV, lymph node metastasis, tumor depth and advanced TNM stage. Moreover, TGF-β1 levels in exosomes were correlated with Treg cell percentage in LNs, which established the possible link between TGF-β1 induction and Treg differentiation. The effect and mechanisms of isolated exosomes from gastric cancers on Treg differentiation is under investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:45:49Z (GMT). No. of bitstreams: 1 ntu-104-R02446014-1.pdf: 2560487 bytes, checksum: 4c351d246ed5da590d590f027d887324 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 審定書 i
Contents ii 致謝 iv 中文摘要 v Abstract vi I. Introduction 1 1.1. Gastric cancer and lymph node metastasis 1 1.2. Changes in Treg density and microenvironment of regional lymph nodes of gastric cancer patients. 2 1.3. The role of TGF-β in cancer 3 1.4. TGF-β1 and cancer exosomes 4 1.5. Aims of the study 6 II. Materials and Methods 7 2.1. Human Tissue Samples 7 2.2. Isolation of exosomes 7 2.3. EM and Immuno-EM 8 2.4. Nanoparticle Tracking Analysis 9 2.5. ELISA 10 2.6. Calculating TGF-β1 expression levels in exosomes 10 2.7. Immunohistochemistry (IHC) 10 Paraffin sectioning 10 Deparaffinization 11 Antigen retrieval 11 Staining 11 Dehydration and mounting 12 2.8. Sampling 12 2.9. Western blot analysis 13 Bradford assay 13 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 14 Transfer of proteins and staining 15 2.10. Statistical analysis 16 III. Results 20 3.1. Characteristics of purified exosomes from gastric cancer patients 20 3.2. The expression of TGF-β1 in gastric cancers 22 3.3. The presence of TGF-β1 in isolated exosomes of GC patients 23 3.4. The proportion of Treg in draining LNs of gastric cancers 24 3.5. Correlation between the proportion of Treg cells and exosomal TGF-β1 expression. 26 IV. Discussion 27 4.1. Size distribution of exosomes was obtained by various approaches. 27 4.2. Significance of Treg cells in regional lymph nodes of gastric cancer 28 4.3. The relationship between TGF-β1 and gastric cancer 31 V. Figures and Table 33 VI. Reference 46 Appendix 59 I. The correlation of exosomal size and clinicopathological features of gastric cancer 59 II. The correlation of exosomal concentration in plasma and clinicopathological features of gastric cancer. 61 | |
| dc.language.iso | en | |
| dc.subject | 轉化生長因子-β1 | zh_TW |
| dc.subject | 外質體 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | 調節型T 細胞 | zh_TW |
| dc.subject | exosome | en |
| dc.subject | gastric cancer | en |
| dc.subject | Treg | en |
| dc.subject | TGF-β1 | en |
| dc.title | 外質體在胃癌進展中所扮演的角色 | zh_TW |
| dc.title | The Roles of Exosomes in Gastric Cancer Progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 繆希椿(Shi-Chuen Miaw),沈湯龍(Tang-Long Shen) | |
| dc.subject.keyword | 外質體,胃癌,調節型T 細胞,轉化生長因子-β1, | zh_TW |
| dc.subject.keyword | exosome,gastric cancer,Treg,TGF-β1, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
