請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53112完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆(Kwei-Long Huang) | |
| dc.contributor.author | Chin-Shao Wei | en |
| dc.contributor.author | 魏勤韶 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:45:06Z | - |
| dc.date.available | 2018-08-11 | |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | 1.Alfandari, L., Lemalade, J.-L., Nagih, A., & Plateau, G. (2011). A MIP flow model for crop-rotation planning in a context of forest sustainable development. Annals of Operations Research, 190(1), 149-164.
2.Bailey, G. E. (1915). Vertical farming: Wilmington, Del. E. I. duPont de Nemours powder co. 3.Conway, R. W., Maxwell, W. L., & Miller, L. W. (2012). Theory of scheduling: Courier Corporation. 4.Costa, A. M., dos Santos, L. M. R., Alem, D. J., & Santos, R. H. (2014). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research, 219(1), 265-283. 5.Detlefsen, N. K., & Jensen, A. L. (2007). Modelling optimal crop sequences using network flows. Agricultural Systems, 94(2), 566-572. 6.dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2011). Crop rotation scheduling with adjacency constraints. Annals of Operations Research, 190(1), 165-180. 7.Hadiwiyanti, R. (2012). A Simulation Study of Dispatching Rule in Plant Factory. National Taiwan University of Science and Technology. 8.Hari, Y. (2012). Multiple-Crop Scheduling for Plant Factory. National Taiwan University of Science and Technology. 9.Hartmann, S. (1998). A competitive genetic algorithm for resource‐constrained project scheduling. Naval Research Logistics (NRL), 45(7), 733-750. 10.Hu, M.-C., Chen, Y.-H., & Huang, L.-C. (2014). A sustainable vegetable supply chain using plant factories in Taiwanese markets: A Nash–Cournot model. International Journal of Production Economics, 152, 49-56. 11.Huang, S.-j. (2014). Heuristic Scheduling for Multiple Crop Plant Factory. National Taiwan University of Science and Technology. 12.Ioslovich, I., & Gutman, P.-O. (2000). Optimal control of crop spacing in a plant factory. Automatica, 36(11), 1665-1668. 13.Kantorovich, L. V. (1960). Mathematical methods of organizing and planning production. Management Science, 6(4), 366-422. 14.Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling: John Wiley & Sons. 15.Li, H., & Womer, K. (2012). Optimizing the supply chain configuration for make-to-order manufacturing. European Journal of Operational Research, 221(1), 118-128. 16.Liao, D.-Y., & Yang, Y.-T. (2007). Imaging Order Scheduling of an Earth Observation Satellite. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(5), 794-802. doi: 10.1109/TSMCC.2007.900668 17.Naylor, J. (2002). Introduction to operations management: Pearson Education. 18.NICEGREEN美蔬菜廚房. (2015). 親子科技農夫體驗營. from http://www.nice-green.com.tw/product-info.asp?id=697 19.Oğuz, C., Salman, F. S., & Yalçın, Z. B. (2010). Order acceptance and scheduling decisions in make-to-order systems. International Journal of Production Economics, 125(1), 200-211. 20.Park, M.-W., & Kim, Y.-D. (2000). A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints. European Journal of Operational Research, 123(3), 504-518. 21.Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems: Springer Science & Business Media. 22.Pochet, Y., & Warichet, F. (2008). A tighter continuous time formulation for the cyclic scheduling of a mixed plant. Computers & Chemical Engineering, 32(11), 2723-2744. 23.Salassi, M. E., Deliberto, M. A., & Guidry, K. M. (2013). Economically optimal crop sequences using risk-adjusted network flows: Modeling cotton crop rotations in the southeastern United States. Agricultural Systems, 118, 33-40. 24.Sawik, T. (2005). Integer programming approach to production scheduling for make-to-order manufacturing. Mathematical and Computer Modelling, 41(1), 99-118. 25.Stevenson, W. J., & Sum, C. C. (2010). Operations management: an Asian perspective: McGraw-Hill Education (Asia). 26.SUMKEN光電. (2014). 日本植物工廠參訪考察團. from http://www.sumken.com/jp/visitPF/ 27.Sun, H. L., & Xue, Y. F. (2009). An MILP formulation for optimal scheduling of multi-product batch plant with a heuristic approach. The International Journal of Advanced Manufacturing Technology, 43(7-8), 779-784. 28.方煒. (2010). 環控農業的相關應用實例-植物工廠. from http://www.ecaa.ntu.edu.tw/weifang/cea/CEA1-6-8.htm 29.李秉璋. (2012). 植物工廠應用前景與展望. 農業生技市場趨勢及產品行銷論壇. from http://www.biotaiwan.org.tw/download/structure4/Bing-Zhang%20Lee/101/%E6%A4%8D%E7%89%A9%E5%B7%A5%E5%BB%A0%E6%87%89%E7%94%A8%E5%89%8D%E6%99%AF%E8%88%87%E5%B1%95%E6%9C%9B%20(201207).pdf 30.周瑞仁. (2013). 給植物一個舒服的家—植物工廠的工程需求. 科學月刊2013年5月號350封面故事. 31.林木連, & 邱相文. (2012). 【專題報導四】韓國植物工廠發展近況. from http://www.coa.gov.tw/office_epaper/epaper/infoexplorer/online/24/004/Untitled-1.html 32.飛弘科技工程有限公司. 植物工廠 (Plant Factory)立體示意圖. from http://www.fairtech.com.tw/product.php?CNo=17 33.高辻正基. (1996). 植物工場の基礎と実際. 34.野菜工房. from http://www.5657.com.tw/vegetablesplant/Shows.aspx 35.陳加忠. (2010). 環控技術與完全密閉型植物工廠. from http://amebse.nchu.edu.tw/new_page_393.htm 36.無錫盛和溫室大棚管廠. 光伏温室大棚. from http://865416.72109.20la.com.cn/cn/aspcms/product/2014-12-16/438.html 37.楊玉婷. (2011). 全球立體農業與植物工廠發展趨勢. 農業生技產業季刊第25期, 7. 38.經濟部水利署. (2010). 打造綠色黃金廊道「植物工廠」. from http://www2.water.tku.edu.tw/Sub91/inquiry/101/101-13.pdf 39.鄔家琪. (2013). 現代農園產品—植物工廠的作物. from http://scimonth.blogspot.tw/2013/05/blog-post_2680.html 40.蔡致榮, & 邱相文. (2012). 荷蘭與日本植物工場最新發展. 精密設施工程與植物工場實用化技術研討會專輯. from http://book.tndais.gov.tw/Other/2012machinery/speech1.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53112 | - |
| dc.description.abstract | 植物工廠為新式的農作物生產模式,透過電腦系統對生產環境因素,如溫度、濕度、光源、水分及營養物的完全控制,加速植物生長的效能並且提升產品品質。植物工廠相較於傳統農業營運成本高出許多,如何制定生產計劃提高資源的利用以增加植物工廠的營利成為經營的重要議題。考量農作物交易價格、環境限制、使用空間等,進行植物工廠的生產排程規劃,本研究針對訂單式生產之完全人工控制型植物工廠的排程問題進行求解,將此問題用混合整數規劃模型表示,目標為最大化總收益扣除總成本之後的總利潤,限制分別考慮植物工廠空間、栽培室環境、作物特性、訂單的交貨期限…等,進而求解最佳化模式。使用LINGO軟體求解此混合整數規劃模型可得到最佳解,但使用軟體求解的時間隨實驗規模變大呈現指數成長,故提出一個啟發式演算法(HOBPFS),此演算法考量訂單價格與相關限制,以迴圈的方式對每筆訂單進行生產排程安排,並且在合理的時間內得到可行解,HOBPFS主要包含三個部分:訂單分析與栽培室環境分配、訂單生產排程規劃、可行解的改善。使用此演算法在實證研究上,實驗中設定四種實驗因素進行討論,分別為(1)訂單數量、(2)農作物種類、(3)栽培室數目與(4)是否考慮植物體積變化,且由數值分析能看出,農作物種類與栽培室數目具有相關性,而考慮植物體積變化之情況下確實提高收益符合預期,且使用此演算法得到的可行解的效果能達到最佳解的90%以上。 | zh_TW |
| dc.description.abstract | Plant factory is an environmental controlled facility which can sustain the stable crop cultivation with fast production and better quality by controlling temperature, humidity, lighting, nutrient supply and other cultivating factors. In this research, focus on production scheduling problem of ordering based (Make-to-Order) plant factory and consider size change as time past of crops. The scheduling problem was formulated as a mixed integer programming (MIP) problem. The objective function is to seek the maximum revenue of the plant factory by considering several practical operating conditions such as cultivation room space, environmental constraints, crop, due day of order. The operating conditions are formulated as constraints, and the MIP problem was solved by LINGO programming model to obtain the optimal solution. The computation time of LINGO solver is exponentially increasing when the problem domain is larger. Therefore, we propose the heuristic algorithm (HOBPFS) to solve the large size problem instance, which result show that our heuristic algorithm can indeed get good feasible solutions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:45:06Z (GMT). No. of bitstreams: 1 ntu-104-R02546022-1.pdf: 2390056 bytes, checksum: dda0c9cf4a00e2f47bd9aa5d506d93b4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 ix 第1章 緒論 1 1.1 植物工廠 1 1.1.1 植物工廠的發展 4 1.1.2 植物工廠優缺點 5 1.1.3 作物種植的彈性與限制 5 1.2 植物工廠的配置 7 1.2.1 植物工廠的空間利用 8 1.2.2 植物的特性 9 1.2.3 訂單式生產 9 1.3 研究目的與方法 10 1.3.1 研究範圍與限制 10 1.3.2 研究步驟 10 第2章 文獻探討 11 2.1 植物工廠 11 2.2 植物工廠規劃 13 2.3 植物生產之特性 14 2.4 生產排程 15 2.5 農作物排程 16 第3章 問題描述與模型 18 3.1 問題描述 18 3.2 問題基本假設與限制 18 3.3 混合整數規劃數學模型 20 3.3.1 參數與決策變數說明 20 3.3.2 混合整數規劃模型 23 3.4 混合整數規劃數學模型範例說明 26 3.5 整數數學規劃之限制 29 第4章 HOBPFS演算法 31 4.1 HOBPFS概述 31 4.2 HOBPFS主要流程 33 4.3 HOBPFS範例說明 43 4.3.1 示範案例參數特定 43 4.3.2 示範案例使用HOBPFS操作流程 45 第5章 數值分析 51 5.1 情境設定與說明 51 5.1.1 農作物資訊 51 5.1.2 植物工廠環境設置 52 5.1.3 實驗設計 53 5.2 實驗結果與說明 57 第6章 結論 63 6.1 研究結論 63 6.2 未來展望 64 參考文獻 66 附錄一、103年農作物交易量與交易價趨勢圖 69 附錄二、農作物每週銷售價格資訊 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植物工廠 | zh_TW |
| dc.subject | 生產排程 | zh_TW |
| dc.subject | 訂單式生產 | zh_TW |
| dc.subject | 混合整數規劃 | zh_TW |
| dc.subject | 啟發式演算法 | zh_TW |
| dc.subject | Mixed Integer Programming | en |
| dc.subject | Production Scheduling | en |
| dc.subject | Make-to-Order | en |
| dc.subject | Heuristic Algorithm | en |
| dc.subject | Plant Factory | en |
| dc.title | 考慮植物生長體積變化特性之訂單式植物工廠排程演算法 | zh_TW |
| dc.title | Heuristic Algorithm for Scheduling of Make-to-Order Plant Factory with Considering Crops Size Variation during Cultivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊朝龍(Chao-Lung Yang) | |
| dc.contributor.oralexamcommittee | 孔令傑(Ling-Chieh Kung),洪一薰(I-Hsuan Hong) | |
| dc.subject.keyword | 植物工廠,生產排程,訂單式生產,混合整數規劃,啟發式演算法, | zh_TW |
| dc.subject.keyword | Plant Factory,Production Scheduling,Make-to-Order,Mixed Integer Programming,Heuristic Algorithm, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
