請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53097
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 藍崇文(Chung-wen Lan) | |
dc.contributor.author | Victor Juvida Lau Jr | en |
dc.contributor.author | 留明德 | zh_TW |
dc.date.accessioned | 2021-06-15T16:44:13Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-05 | |
dc.identifier.citation | THESIS MAIN BODY CHAPTERs 1-5: [1] Aberle, A. G. (2006). Fabrication and characterisation of crystalline silicon thin-sheets materials for solar cells. Thin solid sheetss, 511, 26-34. [2] Oliveros, G. A., Liu, R., Sridhar, S., Ydstie, B. E. (2013). Silicon wafers for solar cells by horizontal ribbon growth. Industrial Engineering Chemistry Research, 52(9), 3239-3246. [3] Ranjan, S., Balaji, S., Panella, R. A., Ydstie, B. E. (2011). Silicon solar cell production. Computers Chemical Engineering, 35(8), 1439-1453. [4] Chalmers, B. (1984). High speed growth of sheet crystals. Journal of Crystal Growth, 70(1-2), 3-10. [5] Ciszek, T. F. (1981). The capillary action shaping technique and its applications. In Silicon (pp. 109-146). Springer, Berlin, Heidelberg. [6] Yamatsugu, H., Mitsuyasu, H., Takakura, T. (2008). Crystallization on dipped substrate wafer technology for crystalline silicon solar cells reduces wafer costs. Photovoltaic International [7] Kurz, W., Fisher, D. J. (1989). Fundamentals of solidification. [8] Schonecker, A., Laas, L., Gutjahr, A., Wyers, P., Reinink, A., Wiersma, B. (2002, May). Ribbon-Growth-on-Substrate: progress in high-speed crystalline silicon wafer manufacturing. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 316-319). IEEE. [9] Burgers, A., Gutjahr, A., Laas, L., Schonecker, A., Seren, S., Hahn, G. (2006, May). Near 13% efficiency shunt free solar cells on RGS wafers. In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (Vol. 1, pp. 1183-1186). IEEE. [10] Appapillai, A. T., Sachs, C., Sachs, E. M. (2011). Nucleation properties of undercooled silicon at various substrates. Journal of Applied Physics, 109(8), 084916. [11] Tsoutsouva, M. G., Duffar, T., Garnier, C., Fournier, G. (2015). Undercooling measurement and nucleation study of silicon droplet solidification. Crystal Research and Technology, 50(1), 55-61. [12] Lee, G. H., Rhee, C. K., Lim, K. S. (2006). A study on the fabrication of polycrystalline Si wafer by direct casting for solar cell substrate. Solar energy, 80(2), 220-225. [13] Aoyama, T., Kuribayashi, K. (2000). Influence of undercooling on solid/liquid interface morphology in semiconductors. Acta materialia, 48(14), 3739-3744. [14] Aoyama, T., Kuribayashi, K. (2003). Novel criterion for splitting of plate-like crystal growing in undercooled silicon melts. Acta materialia, 51(8), 2297-2303. [15] Drevet, B., Voytovych, R., Israel, R., Eustathopoulos, N. (2009). Wetting and adhesion of Si on Si3N4 and BN substrates. Journal of the European Ceramic Society, 29(11), 2363-2367. [16] Cröll, A., Lantzsch, R., Kitanov, S., Salk, N., Szofran, F. R., Tegetmeier, A. (2003). Melt‐crucible wetting behavior in semiconductor melt growth systems. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 38(7‐8), 669-675. [17] Fujiwara, K., Horioka, Y., Sakuragi, S. (2015). Liquinert quartz crucible for the growth of multicrystalline Si ingots. Energy Science [18] Deike, R., Schwerdtfeger, K. (1995). Reactions between liquid silicon and different refractory materials. Journal of the Electrochemical Society, 142(2), 609. [19] Yanaba, K., Akasaka, M., Takeuchi, M., Watanabe, M., Narushima, T., Iguchi, Y. (1997). Solubility of carbon in liquid silicon equilibrated with silicon carbide. Materials Transactions, JIM, 38(11), 990-994. [20] Oden, L. A., McCune, R. A. (1987). Phase equilibria in the Al-Si-C system. Metallurgical transactions A, 18(12), 2005-2014. [21] Scace, R. I., Slack, G. A. (1959). Solubility of carbon in silicon and germanium. The journal of chemical physics, 30(6), 1551-1555. [22] Harris, G. L. (Ed.). (1995). Properties of silicon carbide (No. 13). Iet. [23] Ramsdell, L. S. (1947). Studies on silicon carbide. American Mineralogist: Journal of Earth and Planetary Materials, 32(1-2), 64-82. [24] Palmour, J. W., Kong, H. S., Edmond, J. A. (1990). U.S. Patent No. 4,946,547. Washington, DC: U.S. Patent and Trademark Office. [25] Palmour, J. W. (1989). U.S. Patent No. 4,865,685. Washington, DC: U.S. Patent and Trademark Office. [26] Davis, R. F., Carter Jr, C. H., Hunter, C. E. (1989). U.S. Patent No. 4,866,005. Washington, DC: U.S. Patent and Trademark Office. [27] Li, S. Y., Zhu, H. H., Sadjadi, S. R., Pirkle, D. R., Bowers, J., Goss, M. (2003). U.S. Patent No. 6,670,278. Washington, DC: U.S. Patent and Trademark Office. [28] Magnani, G., Sico, G., Brentari, A., Fabbri, P. (2014). Solid-state pressureless sintering of silicon carbide below 2000° C. Journal of the European Ceramic Society, 34(15), 4095-4098. [29] She, J. H., Deng, Z. Y., Daniel-Doni, J., Ohji, T. (2002). Oxidation bonding of porous silicon carbide ceramics. Journal of materials science, 37(17), 3615-3622. [30] Yang, Y., Han, F., Xu, W., Wang, Y., Zhong, Z., Xing, W. (2017). Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid. Ceramics International, 43(3), 3377-3383. [31] E. Takasuka, E. Tokizaki, K. Terashima, S. Kimura, Emissivity of liquid silicon in visible and infrared regions, Int. J. Appl. Phys., 81(1997) 6384-6389. [32] Timans, P. J. (1993). Emissivity of silicon at elevated temperatures, Int. J. Appl. Phys., 74(10), 6353-6364. [33] Lau Jr, V., Maeda, K., Fujiwara, K., Lan, C. W. (2020). In situ observation of the solidification interface and grain boundary development of two silicon seeds with simultaneous measurement of temperature profile and undercooling. Journal of Crystal Growth, 532, 125428. [34] Yang, C. F., Tsoutsouva, M. G., Hsu, H. P., Lan, C. W. (2016). Infrared measurement of undercooling during silicon solidification on bare and Si3N4 coated quartz substrates. Journal of Crystal Growth, 453, 130-137. [35] Xu, J., Yang, T., Li, Z., Wang, X., Xiao, Y., Jian, Z. (2020). The recalescence rate of cooling curve for undercooled solidification. Scientific reports, 10(1), 1-5. [36] Wenzel, R. N. (1949). Surface roughness and contact angle. The Journal of Physical Chemistry, 53(9), 1466-1467. [37] Fecht, H. J. (1988). The contribution of lattice matching to the interfacial energy between dissimilar materials. Le Journal de Physique Colloques, 49(C5), C5-171. [38] Bachmann, K. J., Dietz, N., Miller, A. E., Venables, D., Kelliher, J. T. (1995). Heteroepitaxy of lattice‐matched compound semiconductors on silicon. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 13(3), 696-704. [39] Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, ISBN 0-12-352651-5. [40] Liao, T. J., Kang, Y. S., Lan, C. W. (2018). In situ observation of crystal/melt interface and infrared measurement of temperature profile during directional solidification of silicon wafer. Journal of Crystal Growth, 499, 90-97. [41] Hu, K. K., Maeda, K., Shiga, K., Morito, H., Fujiwara, K. (2019). The effect of grain boundaries on instability at the crystal/melt interface during the unidirectional growth of Si. Materialia, 7, 100386. [42] Ghomashchi, R., Nafisi, S. (2017). Some remarks on cooling curves as a principle tool for solidification characterization. Journal of Crystal Growth, 458, 129-132. [43] Ma, W., Zheng, H., Xia, M., Li, J. (2004). Undercooling and solidification behavior of magnetostrictive Fe–20 at.% Ga alloys. Journal of alloys and compounds, 379(1-2), 188-192. [44] Lu, S. Y., Li, J. F., Zhou, Y. H. (2007). Grain refinement in the solidification of undercooled Ni–Pd alloys. Journal of crystal growth, 309(1), 103-111. [45] Liu, R. P., Volkmann, T., Herlach, D. M. (2001). Undercooling and solidification of Si by electromagnetic levitation. Acta materialia, 49(3), 439-444. [46] Spaepen, F. (1994). Homogeneous nucleation and the temperature dependence of the crystal-melt interfacial tension. SOLID STATE PHYSICS-NEW YORK-ACADEMIC PRESS-, 47, 1-1. [47] Chadwick, G. A. (1972). Metallography of phase transformations. [48] Nagashio, K., Kuribayashi, K. (2005). Growth mechanism of twin-related and twin-free facet Si dendrites. Acta Materialia, 53(10), 3021-3029. [49] Shiga, K., Kawano, M., Maeda, K., Morito, H., Fujiwara, K. (2019). The in situ observation of faceted dendrite growth during the directional solidification of GaSb. Scripta Materialia, 168, 56-60. [50] Chen, G. Y., Lin, H. K., Lan, C. W. (2016). Phase-field modeling of twin-related faceted dendrite growth of silicon. Acta Materialia, 115, 324-332. [51] Fujiwara, K., Maeda, K., Koizumi, H., Nozawa, J., Uda, S. (2012). Effect of silicon/crucible interfacial energy on orientation of multicrystalline silicon ingot in unidirectional growth. Journal of Applied Physics, 112(11), 113521. [52] Tsai, H. W., Yang, M., Chuck, C., Lan, C. W. (2013). Effect of crucible coating on the grain control of multi-crystalline silicon crystal growth. Journal of crystal growth, 363, 242-246. [53] Development of grain structures of multi-crystalline silicon fromrandomly orientated seeds in directional solidification [54] Prakash, R. R., Sekiguchi, T., Jiptner, K., Miyamura, Y., Chen, J., Harada, H., Kakimoto, K. (2014). Grain growth of cast-multicrystalline silicon grown from small randomly oriented seed crystal. Journal of crystal growth, 401, 717-719. [55] Liao, T. J., Kang, Y. S., Lan, C. W. (2018). In situ observation of crystal/melt interface and infrared measurement of temperature profile during directional solidification of silicon wafer. Journal of Crystal Growth, 499, 90-97. APPENDIX I: [1] N. De Marco, Defect and Grain Boundary Engineering for Enhanced Performances and Lifetimes of Hybrid Perovskite Solar Cells, Doctoral dissertation, University of California, Los Angeles, 2019. [2] M. G. Deceglie, M. D. Kelzenberg, H. A. Atwater, Effects of bulk and grain boundary recombination on the efficiency of columnar-grained crystalline silicon film solar cells, IEEE Photovoltaic Specialists Conference 35 (2010) 1487-1490. [3] W. W. Mullins, R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, Journal of applied physics 35 (1964) 444-451. [4] S. A. Norris, S. H. Davis, S. J. Watson, P. W. Voorhees, Faceted interfaces in directional solidification, Journal of Crystal Growth, 310 (2008) 414-427. [5] K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, K. Nakajima, In situ observation of Si faceted dendrite growth from low-degree-of-undercooling melts, Acta Materialia 56 (2008) 2663-2668. [6] T. J. Liao, Y. S. Kang, C. W. Lan, In situ observation of crystal/melt interface and infrared measurement of temperature profile during directional solidification of silicon wafer, Journal of Crystal Growth 499 (2018) 90-97. [7] B. Chalmers, Principles of solidification, Boston, Massachusetts, 1970. [8] K. K. Hu, K. Maeda, H. Morito, K. Shiga, K. Fujiwara, In situ observation of grain-boundary development from a facet-facet groove during solidification of silicon, Acta Materialia 153 (2018) 186-192. [9] Y.M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan, Development of high‐performance multicrystalline silicon for photovoltaic industry, Progress in Photovoltaics: Research and Applications 23 (2015) 340-351. [10] E. Takasuka, E. Tokizaki, K. Terashima, S. Kimura, Emissivity of liquid silicon in visible and infrared regions, Journal of applied physics 81 (1997) 6384-6389. [11] K. Fujiwara, M. Tokairin, W. Pan, H. Koizumi, J. Nozawa, S. Uda, Instability of crystal/melt interface including twin boundaries of silicon, Applied Physics Letters 104 (2014) 182110. [12] L. C. Chuang, K. Maeda, H. Morito, K. Shiga, W. Miller, K. Fujiwara, Effect of misorientation angle of grain boundary on the interaction with Σ3 boundary at crystal/melt interface of multicrystalline silicon, Materialia 7 (2019) 100357. [13] H. K. Lin, C. W. Lan, Revisiting the twinning mechanism in directional solidification of multi-crystalline silicon sheet, Acta Materialia 131 (2017) 1-10. [14] K. Nagashio, K. Kuribayashi, Growth mechanism of twin-related and twin-free facet Si dendrites, Acta Materialia, 53 (2005) 3021-3029. [15] I. J. Beyerlein, C. N. Tomé, A probabilistic twin nucleation model for HCP polycrystalline metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2010) 2517-2544. [16] M. Tokairin, K. Fujiwara, K. Kutsukake, N. Usami, K. Nakajima, Formation mechanism of a faceted interface: In situ observation of the Si (100) crystal-melt interface during crystal growth, Physical Review B 80 (2009) 174108. [17] M. Tokairin, K. Fujiwara, K. Kutsukake, H. Kodama, N. Usami, K. Nakajima, Pattern formation mechanism of a periodically faceted interface during crystallization of Si, Journal of Crystal Growth 312 (2010) 3670-3674. [18] H. K. Lin, C. W. Lan, Three-dimensional phase field modeling of silicon thin-film growth during directional solidification: Facet formation and grain competition, Journal of Crystal Growth 401 (2014) 740-747. [19] K. Fujiwara, M. Tokairin, W. Pan, H. Koizumi, J. Nozawa, S. Uda, Instability of crystal/melt interface including twin boundaries of silicon, Applied Physics Letters 104 (2014) 182110. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53097 | - |
dc.description.abstract | Kerf-less矽晶片鑄造技術是一種使用矽晶直接接觸不同基板的方法,由於此方法比起其他非傳統鑄造技術有更高的潛能突破晶片品質和產量的限制,所以是一項相當重要的研究主題。使用基板作為鑄造晶片的方法讓人能更好控制鑄造出的晶片型態和晶體特性,同時也具有更好控制溫度分布的能力,因此能有較好的晶片輸出。在這份研究裡,我們使用固向觀測及測量溫度的方法,來更加了解矽晶片在不同基板上的長晶機制。研究氮化矽、石英板和碳化矽在5 K/min 到 100 K/min的冷卻速度下的變化。在使用固向觀測方法下,我們發現根據不同基板和冷卻速度矽晶片長晶由帶狀成核變化為圓形狀成核。帶狀成核一開始在軸向快速長晶,之後再向側向長晶,例如樹枝狀生長,而圓形狀成核有著更加穩定的徑向長晶。目前的文章討論了帶狀成核和圓形狀成核的長晶模式和觀察趨勢。在長晶模式中,冷卻速度和過冷現象被發現是一個重要的因素,因為它們影響了成核頻率和回火現象。在帶狀成核時,增加冷卻速度和過冷皆被發現能增加成核傾向和晶粒生長頻率,是因為他們對過冷和局部溫度梯度的影響。但是,在圓形成核模式時,即使在低過冷狀態下成核能得到較高的晶粒頻率。臨界成核半徑和回火速度被用來解釋長晶模式和那些引起圓形狀長晶需要的參數。電子背向散射繞射分析被用於進行晶向和晶粒大小分布測量,測量結果和固向觀測及溫度測量方法一致。 | zh_TW |
dc.description.abstract | Kerf-less silicon casting technologies utilizing direct contact on a foreign substrate remains an important research topic due to its potential in overcoming the quality and production output limitations present in other non-conventional silicon casting technologies. The use of substrate as a casting surface provides the system better control over the casted wafer’s morphological and crystallographic characteristics, and it also grants better control over the temperature distribution to achieve higher throughput. In this study, in situ observations and temperature measurements were carried out to better understand the nucleation and growth behavior of silicon thin-sheets on various substrates. Silicon nitride, quartz, and silicon carbide substrates at cooling rates ranging from 5 K/min to 100 K/min were considered. Visual observations revealed variations in the growth mode of silicon wafers from strips growth to circular growth due to substrate and the cooling parameters effects to the underlying driving force for solidification. The nucleation of solid strips, i.e., dendrites, initially grew axially at high rates before expanding laterally, whereas circular nucleations grew radially at a relatively slower and stable pace. Furnace cooling parameters and the extent to which the substrate can sustain the undercooling were found to dictate the ensuing mode of growth and the trends experienced therein. Undercooling estimates, recalescence rates, solidification densities, and growth kinetics were discussed to discern their interrelation and explain their effects to the resulting nucleation and wafer growth behavior. Increasing cooling rate and undercooling for nucleation were found to consistently increase grain frequency as confirmed by electron backscatter diffraction analysis. Prevalence of certain grain orientation and the consequent increase in Σ3 grain boundaries was also discerned due to the preference of dendritic strips growth. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:44:13Z (GMT). No. of bitstreams: 1 U0001-0508202014320900.pdf: 2790594 bytes, checksum: ba994016de57f25cd2a4e76b3b4a6564 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENT - I TABLE OF CONTENTS - II LIST OF FIGURES - IV LIST OF TABLES - VI 摘要 - 1 ABSTRACT - 2 Chapter 1 - 3 INTRODUCTION - 3 Chapter 2 - 5 EXPERIMENTAL - 5 2.1. Experimental Setup - 5 2.2. Experimental Procedure - 9 2.3. Temperature Measurement - 10 Chapter 3 - 14 IN SITU VISUALIZATION AND INFRARED STUDY OF SILICON WAFER CASTING ON SILICON NITRIDE AND QUARTZ SUBSTRATES - 14 3.1. Temperature Measurement - 14 3.2. Visualization - 17 3.3. Electron Backscatter Diffraction Analysis - 23 Chapter 4 - 26 IN SITU VISUALIZATION AND INFRARED STUDY OF SILICON WAFER CASTING ON SILICON CARBIDE AS LOW NUCLEATION UNDERCOOLING SUBSTRATE - 26 4.1. Temperature Measurement - 26 4.2. Visualization - 30 4.3. Electron Backscatter Diffraction Analysis - 35 Chapter 5 - 38 CONCLUSIONS - 38 REFERENCES - 41 APPENDIX - 46 APPENDIX I - 47 | |
dc.language.iso | en | |
dc.title | 石英、氮化矽與碳化矽基板上長晶之觀測研究 | zh_TW |
dc.title | In Situ Visualization and Infrared Study of Silicon Thin-sheet Growth on Quartz, Silicon Nitride, and Silicon Carbide Substrates for Kerf-Less Growth Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖英志(Ying-Chih Liao),王丞浩(Chen-Hao Wang) | |
dc.subject.keyword | Non-kerf-loss,kerf-less,矽,基質,固向觀測,過冷, | zh_TW |
dc.subject.keyword | Non-kerf-loss,Kerf-less,Silicon,Substrates,In situ,Visualization,Undercooling, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU202002465 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0508202014320900.pdf 目前未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。