請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇南維(Nan-Wei Su) | |
| dc.contributor.author | Wei-Ching Hung | en |
| dc.contributor.author | 洪偉晴 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:43:51Z | - |
| dc.date.available | 2020-08-10 | |
| dc.date.copyright | 2015-08-10 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-10 | |
| dc.identifier.citation | 蔡世勇 (1992) 芝麻油之特性及製程介紹 食品工業 24 (9):33-39
福田靖子, 大澤俊彦, 川岸舜朗, 並木満夫 (1988) Oxidative stability of foods fried with sesame oil. 日本食品工業学会誌 35 (1):28-32 Dong P, Fu X, Wang X, Wang WM, Cao WM, Zhang WY (2015) Protective effects of sesaminol on BEAS-2B cells impaired by cigarette smoke extract. Cell biochemistry and biophysics 71 (2):1207-1213. Fukuda Y, Nagata M, Osawa T, Namiki M (1986) Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. Journal of the American Oil Chemists’ Society 63 (8):1027-1031. Haslam E, Haworth RD (1955) The constituents of natural phenolic resins. Part XXIII. The constitution of sesamolin. Journal of the Chemical Society (Resumed):827-833. Huang J, Song G, Zhang L, Sun Q, Lu X (2012) A novel conversion of sesamolin to sesaminol by acidic cation exchange resin. European Journal of Lipid Science and Technology 114 (7):842-848. Jan KC, Hwang LS, Ho CT (2009) Biotransformation of sesaminol triglucoside to mammalian lignans by intestinal microbiota. J Agric Food Chem 57 (14):6101-6106. Jiang J, Paterson A, Piggott J (1990) Effects of pectolytic enzyme treatments on anthocyanins in raspberry juice. International Journal of Food Science & Technology 25 (5):596-600. Jiao Y, Davin LB, Lewis NG (1998) Furanofuran lignan metabolism as a function of seed maturation in Sesamum indicum: methylenedioxy bridge formation. Phytochemistry 49 (2):387-394. Kang M-H, Katsuzaki H, Osawa T (1998) Inhibition of 2, 2′-azobis (2, 4-dimethylvaleronitrile)-induced lipid peroxidation by sesaminols. Lipids 33 (10):1031-1036. Kang M-H, Kawai Y, Naito M, Osawa T (1999a) Dietary defatted sesame flour decreases susceptibility to oxidative stress in hypercholesterolemic rabbits. The Journal of nutrition 129 (10):1885-1890. Kang M-H, Naito M, Sakai K, Uchida K, Osawa T (1999b) Mode of action of sesame lignans in protecting lowdensity lipoprotein against oxidative damage in vitro. Life sciences 66 (2):161-171. Kato MJ, Chu A, Davin LB, Lewis NG (1998) Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47 (4):583-591. Katsuzaki H, Kawakishi S, Osawa T (1994) Sesaminol glucosides in sesame seeds. Phytochemistry 35 (3):773-776. Kumazawa S, Koike M, Usui Y, NAKAYAMA T, FUKUDA Y (2003) Isolation of sesaminols as antioxidative components from roasted sesame seed oil. Journal of Oleo Science 52 (6):303-307. Kuo PC, Lin MC, Chen GF, Yiu TJ, Tzen JT (2011) Identification of methanol-soluble compounds in sesame and evaluation of antioxidant potential of its lignans. J Agric Food Chem 59 (7):3214-3219. Kuriyama K, Murui T (1993) Effect of cellulase on hydrolysis of lignan glycosides in sesame seed by β-glucosidase. Nippon Nôgeikagaku Kaishi 67:1701-1705 Lee SB, Chung D-w (2014) Synthesis and purification of kaempferol by enzymatic hydrolysis of tea seed extract. Biotechnology and Bioprocess Engineering 19 (2):298-303. Lee W-J, Su N-W, Lee M-H, Lin J-T (2013) Examination of the Modified Villavecchia Test for Detecting Sesame Oil. Journal of the American Oil Chemists' Society 90 (5):667-674. Liu H, Du X, Yuan Q, Zhu L (2009) Optimisation of enzyme assisted extraction of silybin from the seeds of Silybum marianum by Box-Behnken experimental design. Phytochemical analysis : PCA 20 (6):475-483. Maiti G, Adhikari S, Roy SC (1995) Stereoselective total synthesis of (±)-samin and the dimethoxy analogue, the general furofuran lignan precursors. Tetrahedron 51 (30):8389-8396 Marchand PA, Lewis NG, Zajicek J (1997) Oxygen insertion in Sesamum indicum furanofuran lignans. diastereoselective syntheses of enzyme substrate analogues. Canadian journal of chemistry 75 (6):840-849 Mazur W, Fotsis T, Wähälä K, Ojala S, Salakka A, Adlercreutz H (1996) Isotope dilution gas chromatographic–mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Analytical biochemistry 233 (2):169-180 Meagher LP, Beecher GR, Flanagan VP, Li BW (1999) Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. Journal of agricultural and food chemistry 47 (8):3173-3180 Milder IEJ, Arts ICW, Putte Bvd, Venema DP, Hollman PCH (2007) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition 93 (03):393. Miyake Y, Fukumoto S, Okada M, Sakaida K, Nakamura Y, Osawa T (2005) Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. Journal of agricultural and food chemistry 53 (1):22-27. Moazzami AA (2006) Sesame Seed Lignans. Nagata M, Osawa T, Namiki M, Fukuda Y, Ozaki T (1987) Stereochemical structures of antioxidative bisepoxylignans, sesaminol and its isomers, transformed from sesamolin. Agricultural and Biological Chemistry 51 (5):1285-1289 Nair A, Kuwahara A, Nagase A, Yamaguchi H, Yamazaki T, Hosoya M, Omura A, Kiyomoto K, Yamaguchi M-a, Shimoyama T (2013) Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549. PloS one 8 (4) Namiki M (1995) The chemistry and physiological functions of sesame. Food reviews international 11 (2):281-329 Ohtsuki T, Akiyama J, Shimoyama T, Yazaki S, Ui S, Hirose Y, Mimura A (2003) Increased production of antioxidative sesaminol glucosides from sesame oil cake through fermentation by Bacillus circulans strain YUS-2. Bioscience, biotechnology, and biochemistry 67 (10):2304-2306. doi:10.1271/bbb.67.2304 Parker RS, Sontag TJ, Swanson JE (2000) Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. Biochemical and biophysical research communications 277 (3):531-534 Ryu SN, HO CT, Osawa T (1998) High performance liquid chromatographic determination of antioxidant lignan glycosides in some varieties of sesame. Journal of Food Lipids 5 (1):17-28 Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M, Yamada H (1991) Sesamin is a potent and specific inhibitor of Δ5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids 26 (7):512-516 Shyu Y-S, Hwang LS (2002) Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International 35 (4):357-365 Struijs K, Vincken JP, Gruppen H (2008) Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds. Rapid communications in mass spectrometry : RCM 22 (22):3615-3623. Tashiro T, Fukuda Y, Osawa T, Namiki M (1990) Oil and minor components of sesame (Sesamum indicum L.) strains. Journal of the American Oil Chemists’ Society 67 (8):508-511. Wan Y, Li H, Fu G, Chen X, Chen F, Xie M (2015) The relationship of antioxidant components and antioxidant activity of sesame seed oil. Journal of the Science of Food and Agriculture. Wirth T, Kulicke KJ, Fragale G (1996) Chiral diselenides in the total synthesis of (+)-samin. The Journal of organic chemistry 61 (8):2686-2689. Yamashita K, Iizuka Y, Imai T, Namiki M (1995) Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low α-tocopherol diet. Lipids 30 (11):1019-1028. Zheng HZ, Hwang IW, Chung SK (2009) Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes. Journal of Zhejiang University Science B 10 (12):912-919. Zhu X, Zhang X, Sun Y, Su D, Sun Y, Hu B, Zeng X (2013) Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J Agric Food Chem 61 (8):1868-1877. 福田靖子, 大澤俊彦, 川岸舜朗, 並木満夫 (1988) Oxidative stability of foods fried with sesame oil. 日本食品工業学会誌 35 (1):28-32. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53091 | - |
| dc.description.abstract | 木酚素(lignan)為一類植物次級代謝物,以芝麻與亞麻籽中含量最為豐富。研究證實木酚素具有多種生理活性,包括抗氧化、抗腫瘤、調節血脂、抗發炎與抗老化等。芝麻籽中主要的木酚素為,芝麻酚(sesamin),芝麻酚林(sesamolin)及木酚素配醣體(lignan glucosides)。經過加工提取芝麻油後,sesamin及sesamolin主要存在於芝麻油中,而木酚素配醣體包括sesaminol glucosides 及pinoresinol glucosides則存在於芝麻粕中。Sesaminol及其異構物近來已被證實具強抗氧化性、與α-tocopherol具協同作用,並且能抑制低密度脂蛋白氧化等活性,然而芝麻中存在的形態為conjugate form,主要為sesaminol glucosides,於芝麻中含量約0.1% (w/w)。本研究建立由脫脂芝麻粕回收製備sesaminol之程序。內容分為三部分,第一部分藉由sesamolin酸轉換途徑製備sesaminol及評估其可行性。結果顯示在試驗系統下,sesamolin皆無法轉換出sesaminol。推論sesamolin酸轉換路徑,主要途徑為sesamolin水解得到sesamol及samin ; 次要途徑為sesamolin因酸催化裂解並進行結構重組得到sesamol及sesaminol。第二部分探討由sesaminol glucosides (STG)製備sesaminol的最適條件。分別進行酸水解與酵素水解試驗。以STG區分為試驗原料。分別以5%甲酸、1.2 M鹽酸級0.6 M硫酸在高溫高壓下酸水解,發現以5%甲酸可對STG進行水解並生成sesaminol,但STG水解效率不佳,於1.2 M鹽酸及0.6 M硫酸下雖然STG可完全降解但產物不安定,並無sesaminol產生。第三部分探討利用酵素水解法製備sesaminol之可行性,首先篩選可水解STG的商業化酵素,結果以Viscozyme® L及Pectinex Ultra SP-L效果最佳。分別以脫脂芝麻粕及sesaminol glucosides萃出物為原料的結果顯示,利用Viscozyme® L及Pectinex Ultra SP-L於45℃下作用48 h後的水解液含有最多量的sesaminol。其中以Viscozyme® L對sesaminol glucosides萃取物的水解效果最佳,產物約含有5% sesamin及5% sesaminol,相較於存在芝麻中的sesaminol含量提升了近5000倍。 | zh_TW |
| dc.description.abstract | Lignan, a class of plant secondary metabolites, occurs naturally abundant in sesame seeds and flaxseeds. Many studies revealed that sesame lignans possess multiple biological activities such as antioxidant, anti-tumor, anti-inflammatory, and anti-aging activity. Sesaminol has been shown a variety of beneficial functions to humans, including its strongly antioxidant activity, a potent inhibitor to retard the oxidation of low-density lipoproteins, anti-tumor activity by the induction of apoptosis in human lymphoid leukemia cells. However, sesaminol presents only 0.001% in sesame seeds, and glucosyl conjugates of sesaminol, particularly sesaminol triglucoside (STG), are the major form in sesame. The present study aimed to develop a promising and feasible method to produce sesaminol by hydrolyzing STG. First, we deduced the proposed pathway for acid conversion of sesamolin. We considered that sesamolin would be hydrolyzed to form sesamol and samin rather than rearranged to synthesize sesaminol based on we failed to prepare sesaminol in any cases through sesamolin by acidic-catalyzed conversion. Ont the other hand, isolation of STG from defatted sesame cake was achieved by extraction with 80% MeOH and successively HP-20 resin fractionation.Subsequently, the isolated STG fraction was hydrolyzed with individually acid solutions including 1.2 M HCl, 0.6 M H2SO4, and 5% formic acid under the condition at 121℃ and 1.5 atm. The results revealed STG was fully degraded with the treated groups of both 1.2 M HCl and 0.6 M H2SO4 within 20 min, and no sesaminol was detected in their corresponding hydrolysates. For the group of formic acid treatment, only trace sesaminol been detected and revealed 5% formic acid was not appropriate to produce sesaminol by acid hydrolysis at 121℃ and 1.5 atm with STG. For the investigation of sesaminol production through hydrolyzing STG by commercially available enzymes, eight tested groups with individual or combined enzymes were designed for evaluating the feasibility. Our results suggested that Viscozyme®L and Pectinex Ultra SP-L could catalyze the hydrolysis of STG to generate sesaminol. Futhermore, the optimal condition for preparing sesaminol concentrate by Viscozyme®L hydrolysis with ethanol extract of defatted sesame cake was also evaluated. With the optimal condition, the content of sesaminol in the product was approximately 5% (by weight) that was about 5000-fold increased with the recovery of 84% . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:43:51Z (GMT). No. of bitstreams: 1 ntu-104-R02623009-1.pdf: 4239213 bytes, checksum: 01c922fa80155e281a02426538f49e56 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書
誌謝 i 中文摘要 iii Abstract iv 目次 I 表次 IV 圖次 V 附錄 VI 縮寫對照表 VII 第一章、 前言 1 第二章、 文獻整理 2 一、芝麻 2 1.1 芝麻簡介 2 1.2 芝麻之栽培環境與植株型態 4 1.3 芝麻油 5 二、芝麻木酚素 7 2.1 芝麻木酚素結構 7 2.2 芝麻木酚素之生合成途徑 11 2.3芝麻木酚素於芝麻籽中萌芽時之含量變化 12 2.4 芝麻素酚配醣體之生理活性及體內代謝 12 2.5 Sesaminol之生理活性 15 2.5.1抗氧化性 15 2.5.2與α-tocopherol具協同作用 15 2.5.3對菸草萃取物破壞之支氣管上皮細胞具保護作用 16 2.5.4調節脂肪酸代謝 16 三、木酚素於油脂精煉過程中之結構轉換 19 四、芝麻油之抗氧化性與抗氧化物 24 五、Sesaminol製備之相關研究 26 5.1 精鍊後芝麻油及脫臭蒸餾物回收sesaminol 26 5.2 Sesamolin酸轉換製備sesaminol 27 5.3 Sesaminol glucosides之水解 27 六、商用酵素Viscozyme ® L及Pectinex Ultra SP-L之應用 32 第三章、 材料與方法 34 一、實驗架構 34 二、實驗器材與儀器設備 35 2.1 實驗材料 35 2.2 試藥與溶劑 37 2.3 儀器設備 38 三、HPLC分析條件之建立 39 3.1 層析條件 39 3.2 檢量線製備與定量作業 40 四、實驗方法 41 4.1 探討不同酸試劑與溶劑系統對sesamolin之酸轉換試驗 41 4.2 高效液相層析串聯式質譜儀(LC-ESI-MS/MS)分析sesamolin酸轉換液之條件 41 4.3 分離與純化酸轉換液產物之條件 42 4.4 薄層層析法分離sesamolin酸轉換液產物 42 4.5 核磁共振光譜分析sesamolin酸轉換產物之條件 42 4.6 酸水解試驗探討由STG製備sesaminol 43 4.7 酵素水解試驗探討由STG製備sesaminol 43 4.8 電灑離子化質譜 (ESI-MS/MS)分析sesaminol glucosides及sesaminol之條件 45 4.9 探討由sesaminol glucosides粗萃物回收sesaminol之最佳反應條件 45 4.10由脫脂芝麻粕及sesaminol glucosides粗萃物回收sesaminol 47 第四章、結果與討論 48 一、不同酸試劑對sesamolin進行酸轉換 48 二、不同溶劑系統對sesamolin進行酸轉換 50 三、Sesamolin酸轉換產物分析 53 四、Sesamolin酸轉換產物- samin之光譜資訊 57 五、Sesamolin之酸轉換途徑 59 六、探討STG進行酸水解試驗以製備sesaminol之可行性 60 七、探討STG進行酵素水解試驗以製備sesaminol之可行性 64 八、由脫脂芝麻粕及sesaminol glucosides粗萃物製備sesaminol 72 第五章、結論 78 第六章、參考文獻 80 附錄 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | sesamolin | zh_TW |
| dc.subject | sesaminol | zh_TW |
| dc.subject | sesaminol glucoside | zh_TW |
| dc.subject | Viscozyme | zh_TW |
| dc.subject | Pectinex Ultra SP-L | zh_TW |
| dc.title | 由脫脂芝麻粕回收製備芝麻素酚之研究 | zh_TW |
| dc.title | Studies on the preparation of sesaminol
using defatted sesame cake as crude material | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏雄,王苑春,陳宏章,高彩華 | |
| dc.subject.keyword | sesamolin,sesaminol,sesaminol glucoside,Viscozyme,Pectinex Ultra SP-L, | zh_TW |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
