Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorPi-Ling Liouen
dc.contributor.author劉璧綾zh_TW
dc.date.accessioned2021-06-15T16:43:03Z-
dc.date.available2016-08-17
dc.date.copyright2015-08-17
dc.date.issued2015
dc.date.submitted2015-08-10
dc.identifier.citation鄭森松、莊閔傑、林群雅、張上鎮、王亞男。(2010)。臺灣杉不同部位精油及抽出物抗褐根病菌之評估。臺灣大學生物資源暨農學院實驗林研究報告 24(2):85-95。
羅永松、蕭活生、孫江華、王輝。(2004)。利用 α-pinene 等引誘劑誘殺松瘤象的研究。江西植保 27(1):26-27。
蘇鴻傑。(2007)。台灣杉的前世今生:植群變遷與生活史。台灣杉命名滿一百週年國際學術研討會論文集 99-117。
Adams, R.P. (2007)Identification of essential oil components by gas chromatography/mass spectrometry.In: Allured publishing corporation.
Aharoni, A., Giri,A.P., Verstappen,F.W., Bertea,C.M., Sevenier,R., Sun,Z., Jongsma,M.A., Schwab,W. and Bouwmeester,H.J.(2004)Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16(11), 3110-3131.
Araguez, I. and Valpuesta,V.(2013)Metabolic engineering of aroma components in fruits. Biotechnol. J. 8(10), 1144-1158.
Baldwin, I.T., Halitschke,R., Paschold,A., von Dahl,C.C. and Preston.,C.A.(2006). Volatile signaling in plant-plant interactions: 'talking trees' in the genomics era. Science 311(5762), 812-815.
Beekwilder, J., van Houwelingen,A., Cankar,K., van Dijk,A.D., de Jong,R.M., Stoopen,G., Bouwmeester,H., Achkar,J., Sonke,T. and Bosch,D.(2014)Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol. J. 12(2), 174-182.
Bohlmann, J., Steele,C.L. and Croteau.,R.(1997)Monoterpenoid synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S,5S)-pinene synthase.J. Biol. Chem. 272(35), 21784-21792.
Byun-McKay, A., Godard,K.A., Toudefallah,M., Martin,D.M., Alfaro,R., King,J., Bohlmann,J. and Plant,A.L.(2006)Wound-induced terpenoid synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol. 140(3), 1009-1021.
Cantrell, C.L., Franzblau,S.G. and Fischer,N.H.(2001)Antimycobacterial plant terpenoids. Flavour Fragr. J. 14685-694.
Cascone, P., Iodice,L., Maffei,M.E., Bossi,S., Arimura,G.I. and Guerrieri,E.(2014) Tobacco overexpressing beta-ocimene induces direct and indirect responses against aphids in receiver tomato plants. J. Plant Physiol. 17328-32.
Chang, S., Puryear,J. and Cairney,J.(1993)A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11(2), 113-116.
Chang, S.T., Chen,P.F., Wang,S.Y.and Wu,H.H.(2001)Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. J. Med. Entomol. 38(3), 455-457.
Chang, S.T., Wang,D.S.Y., Wu,C.L., Shiah,S.G., Kuo,Y.H. and Chang,C.J.(2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55(3), 227-232.
Chang, S.T., Wang,S.Y.and Kuo,Y.H.(2003)Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sci. 49(1), 0001-0004.
Chaw, S.M., Parkinson,C.L., Cheng,Y., Vincent,T.M. and Palmer,J.D.(2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl. Acad. Sci. U.S.A. 97(8), 4086-4091.
Chaw, S.M., Zharkikh,A., Sung,H.M., Lau,T.C. and Li,W.H.(1997)Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol. Biol. Evol. 14(1), 56-68.
Chen, F., Tholl,D., Bohlmann,J. and Pichersky,E.(2011)The family of terpenoid synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66(1), 212-229.
Chen, Y.R., Lee,Y.R., Wang,S.Y., Chang,S.T., Shaw,J.F. and Chu,F.H.(2004) Establishment of expressed sequence tags from Taiwania (Taiwania cryptomerioides Hayata) seedling cDNA. Plant Sci. 167(4), 955-957.
Chu, F. H., Kuo, P. M., Chen, Y. R. and Wang, S. Y. (2009) Cloning and characterization of α-pinene synthase from Chamaecyparis formosensis Matsum. Holzforschung, 63(1), 69-74.
Cordoba, E., Salmi,M. and Leon,P.(2009)Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 60(10), 2933-2943.
Crowell, P. L.(1997)Monoterpenoids in breast cancer chemoprevention. Breast Cancer Res. Treat. 46(2-3), 191-197.
Davies, F.K., Jinkerson,R.E.and Posewitz,M.C.(2015)Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth. Res. 123(3), 265-284.
Dicke, M. and Baldwin,I.T.(2010)The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. Trends Plant Sci. 15(3), 167-175.
Duarte, M.C., Figueira,G.M., Sartoratto,A., Rehder,V.L. and Delarmelina,C.(2005) Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 97(2), 305-311.
Dudareva, N.(2003)(E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpenoid synthase genes of a new terpenoid synthase subfamily. Plant Cell 15(5), 1227-1241.
Dudareva, N., Klempien,A., Muhlemann,J.K. and Kaplan,I.(2013)Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198(1), 16-32.
Emanuelsson, O., Nielsen,H. and Von Heijne,G.(1999)ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8(5), 978-984.
Filipowicz, N., Kaminski,M., Kurlenda,J., Asztemborska,M. and Ochocka,J.R.(2003)Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 17(3), 227-231.
Franklin, L.U., Cunnington,G.D. and Young,D.E.(2000)Terpenoid based pesticide treatments for killing terrestrial arthropods including, amongst others, lice, lice eggs, mites and ants. In. Google Patents.
Gadek, P. A., Alpers, D. L., Heslewood, M. M., and Quinn, C. J. (2000)Relationshipswithin Cupressaceae sensu lato: a combined morphological and molecular approach. Am. J. Bot.87(7), 1044-1057.
Gould, M. N.(1995)Prevention and therapy of mammary cancer by monoterpenoids. J. Cell.Biochem. 59(S22), 139-144.
Gugerli, F., Sperisen,C., Buchler,U., Brunner,I., Brodbeck,S., Palmer,J.D. and Qiu,Y.L.(2001)The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol. Phylogenet. Evol. 21(2), 167-175.
Guitton, Y., Nicole,F., Moja,S., Valot,N., Legrand,S., Jullien,F.and Legendre,L.(2010) Differential accumulation of volatile terpenoid and terpenoid synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development. Physiol. Plant 138(2), 150-163.
Guterman, I.(2002)Rose scent: genomics approach to discovering novel floral fragrance-related genes.Plant Cell 14(10), 2325-2338.
Hall, D.E., Zerbe,P., Jancsik,S., Quesada,A.L., Dullat,H., Madilao,L.L., Yuen,M. and Bohlmann,J.(2013)Evolution of conifer diterpenoid synthases: diterpenoid resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpenoid synthases. Plant Physiol. 161(2), 600-616.
Hanula, J.L., Berisford,C.W. and DeBarr,G.L.(1985)Monoterpenoid oviposition stimulants ofDioryctria amatella in volatiles from fusiform rust galls and second-year loblolly pine cones. J. Chem. Ecol. 11(7), 943-952.
Ho, P.J., Chou,C.K., Kuo,Y.H., Tu,L.C. and Yeh,S.F.(2007)Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sci. 80(5), 493-503.
Ho, P.J., Chou,C.K. and Yeh,S.F.(2012)Role of JNK and p38 MAPK in Taiwanin A-induced cell death. Life Sci. 91(25-26), 1358-1365.
Horton, P., Park,K.J., Obayashi,T., Fujita,N., Harada,H., Adams-Collier,C.J. and Nakai,K.(2007)WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585-W587.
Hossain, M.A., Ismail,Z., Rahman,A. and Kang,S.C.(2008)Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind. Crops Prod. 27(3), 328-334.
Iijima, Y., Davidovich-Rikanati,R., Fridman,E., Gang,D.R., Bar,E., Lewinsohn,E. and Pichersky,E.(2004)The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenoids and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136(3), 3724-3736.
Isshiki, M., Morino,K., Nakajima,M., Okagaki,R.J., Wessler,S.R., Izawa,T. and Shimamoto,K.(1998)A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron Plant J. 15(1), 133-138.
Jia, J. W., Crock, J., Lu, S., Croteau, R., and Chen, X. Y.(1999)(3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Arch. Biochem. Biophys.372(1), 143-149.
Keeling, C.I. and Bohlmann,J.(2006)Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170(4), 657-675.
Keeling, C. I., Weisshaar, S., Ralph, S. G., Jancsik, S., Hamberger, B., Dullat, H. K. and Bohlmann, J. (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.).BMC Plant Biol. 11(1), 43.
Kirby, J. and Keasling,J.D.(2009)Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60335-60355.
Knudsen, J.T., Eriksson,R., Gershenzon,J. and Ståhl,B.(2006)Diversity and distribution of floral scent. Bot. Rev. 72(1), 1-120.
Kuo, P. M., Hsu, K. H., Lee, Y. R., Chu, F. H. and Wang, S. Y. (2012) Isolation and characterization of β-cadinene synthase cDNA from Chamaecyparis formosensis Matsum. Holzforschung. 66(5), 569–576.
Lange, B.M., and Ahkami, A.(2013)Metabolic engineering of plant monoterpenoids, sesquiterpenoids and diterpenoids—current status and future opportunities. Plant Biotech.J. 11(2), 169-196.
Lecharny, A., Boudet,N.,Gy,I., Aubourg,S. and Kreis,M.(2003)Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3111-3116.
Lopez, S.B., Lopez,M.L., Aragon,L.M., Tereschuk,M.L., Slanis,A.C., Feresin,G.E., Zygadlo,J.A. and Tapia,A.A.(2011)Composition and anti-insect activity of essential oils from Tagetes L. species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug. J. Agric. Food. Chem. 59(10), 5286-5292.
Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C., and Tumlinson, J. H.(1994)Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc. Natl. Acad. Sci. U.S.A. 91(25), 11836-11840.
Luehrsen, K.R., Taha,S. and Walbot,V.(1994)Nuclear pre-mRNA processing in higher plants.Prog. Nucleic Acid Res. Mol. Biol. 47, 149-193.
Mäntylä, E., Alessio,G.A., Blande,J.D., Heijari,J., Holopainen,J.K., Laaksonen,T., Piirtola,P.and Klemola,T.(2008). From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS One 3(7), e2832.
Martin, D., Tholl,D., Gershenzon,J. and Bohlmann,J.(2002)Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 129(3), 1003-1018.
Martin, D.M.(2003)Induction of volatile terpenoid biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce.Plant Physiol. 132(3), 1586-1599.
Martin, D.M., Chiang,A., Lund,S.T.and Bohlmann,J.(2012)Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewurztraminer grapes. Planta 236(3), 919-929.
Martin, D.M., Fäldt,J. and Bohlmann,J.(2004)Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpenoid synthases of the TPS-d subfamily. Plant Physiol. 135(4), 1908-1927.
Masters, M. T. (1906)On the conifers of china. J. Linn. Soc., Bot. 37(262), 410-424.
Miller, B., Madilao,L.L., Ralph,S. and Bohlmann.,J.(2005)Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 137(1), 369-382.
Morteza‐Semnani, K., Azadbakht,M. and Goodarzi,A.(2004)The essential oils composition of Phlomis herba‐venti L. leaves and flowers of Iranian origin. Flavour Fragr. J. 19(1), 29-31.
Nagegowda, D.A., Gutensohn,M.,Wilkerson,C.G. and Dudareva,N.(2008)Two nearly identical terpenoid synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J. 55(2), 224-239.
Negi, A., Javed,M.S., Melkani,A.B., Dev,V.and Beauchamp,P.S.(2007)Steam volatile terpenoids from Salvia leucantha. J. Essent. Oil Res. 19(5), 463-465.
Nieuwenhuizen, N.J., Wang,M.Y., Matich,A.J., Green,S.A., Chen,X., Yauk,Y.K., Beuning,L.L., Nagegowda,D.A., Dudareva,N. and Atkinson,R.G.(2009)Two terpenoid synthases are responsible for the major sesquiterpenoids emitted from the flowers of kiwifruit (Actinidia deliciosa). J. Exp. Bot. 60(11), 3203-3219.
Nishino, C., Tobin,T.R. and Bowers,W.S.(1977)Electroantennogram responses of the American cockroach to germacrene D sex pheromone mimic. J. Insect Physiol. 23(3), 415-419.
Rodriguez, A., Alquezar,B. and Pena,L.(2013)Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 197(1), 36-48.
Rodriguez, A., San Andres,V., Cervera,M., Redondo,A., Alquezar,B., Shimada,T., Gadea,J., Rodrigo,M.J.,Zacarias,L.,Palou,L., Lopez,M.M., Castanera,P. and Pena,L.(2011)Terpenoid down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156(2), 793-802.
Rodriguez, A., Shimada,T., Cervera,M., Alquezar,B., Gadea,J., Gomez-Cadenas,A., Ollas,C.J.D., Rodrigo,M.J., Zacarias,L. and Pena,L.(2014)Terpenoid down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens. Plant Physiol. 164(1), 321-339.
Saxton, W. T.(1913)The classification of conifers. New Phytol.12(7), 242-262.
Schiestl, F.P.(2010)The evolution of floral scent and insect chemical communication. Ecol. Lett. 13(5), 643-656.
Shelton, D., Zabaras, D., Chohan, S., Wyllie, S. G., Baverstock, P., Leach, D., andHenry, R. (2004)Isolation and partial characterisation of a putative monoterpene synthase from Melaleuca alternifolia.Plant Physiol. Biochem. 42(11), 875-882.
Sieniawska, E., Baj,T., Ulewicz-Magulska,B., Wesolowski,M.and Glowniak,K.(2013) The essential oils from Ligusticum mutellina of polish origin and the chemical relationship of its root essential oil with other Ligusticum species. Biochem. Syst. Ecol. 49125-49130.
Silva, A.C.R.D., Lopes,P.M., Azevedo,M.M.B.D., Costa,D.C.M., Alviano,C.S.and Alviano,D.S.(2012)Biological activities of a-pinene and β-pinene enantiomers. Molecules 17(12), 6305-6316.
Smeekens, S., Bauerle,C., Hageman,J., Keegstra,K. and Weisbeek,P.(1986)The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46(3), 365-375.
Starks, C.M., Back,K., Chappell,J. and Noel,J.P.(1997). Structural basis for cyclic terpenoid biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277(5333), 1815-1820.
Steele, C.L., Crock,J., Bohlmann,J. and Croteau,R.(1998)Sesquiterpenoid synthases from grand fir (Abies grandis) comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J. Biol. Chem. 273(4), 2078-2089.
Su, Y.C., Ho,C.L. and Wang,E.I.C.(2006)Analysis of leaf essential oils from the indigenous ve conifers of Taiwan. Flavour Fragr. J. 21(3), 447-452.
Tahara, S., Yoshida,M., Mizutani,J., Kitamura,C. and Takahashi,S.(1975)A sex stimulant to the male American cockroach in the Compositae plants. Agric. Biol. Chem. 39(7), 1517-1518.
Takei, M., Umeyama,A. and Arihara,S.(2006)T-cadinol and calamenene induce dendritic cells from human monocytes and drive Th1 polarization. Eur. J. Pharmacol. 537(1-3), 190-199.
Tholl, D.(2006)Terpenoid synthases and the regulation, diversity and biological roles of terpenoid metabolism. Curr. Opin. Plant Biol. 9(3), 297-304.
Trapp, S.C. and Croteau,R.B.(2001)Genomic organization of plant terpenoid synthases and molecular evolutionary implications. Genetics 158(2), 811-832.
Trowbridge, A.M., and Stoy, P.C.(2013)BVOC-mediated plant-herbivore interactions.In: Niinemets, Ü. and Monson, R.K.(Ed.), Biology, controls and models of tree volatile organic compound emissions. Springer Netherlands. New York. 21-46.
Tumen, I., Hafizoglu,H., Kilic,A., Donmez,I.E., Sivrikaya,H. and Reunanen,M.(2010)Yields and constituents of essential oil from cones of Pinaceae spp. natively grown in Turkey. Molecules 15(8), 5797-5806.
Verma, R.S., Padalia,R.C., Pandey,V.and Chauhan,A.(2013)Volatile oil composition of vegetative and reproductive parts of lemon-scented gum (Eucalyptus citriodoraHook.). J. Essent. Oil Res. 25(6), 452-457.
Vogel, B.S., Wildung,M.R., Vogel,G. and Croteau,R.(1996)Abietadiene synthase from grand fir (Abies grandis) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpenoid cyclase involved in resin acid biosynthesis. J. Biol. Chem. 271(38), 23262-23268.
Wang, L.J., Fang,X., Yang,C.Q., Li,J.X.and Chen,X.Y.(2013)Biosynthesis and regulation of secondary terpenoid metabolism in plants. Scientia Sinica Vitae 43(12), 1030-1046.
Williams, D.C., McGarvey,D.J., Katahira,E.J.and Croteau,R.(1998)Truncation of limonene synthase preprotein provides a fully active'pseudomature'form of this monoterpenoid cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37(35), 12213-12220.
Yamamoto, Y., Hosokawa, M., Kurihara, H., Maoka, T., and Miyashita, K.(2008) Synthesis of phosphatidylated-monoterpenoid alcohols catalyzed by phospholipase D and their antiproliferative effects on human cancer cells.Bioorg.Med.Chem.Lett. 18(14), 4044-4046.
Zeneli, G., Krokene,P., Christiansen,E., Krekling,T.and Gershenzon,J.(2006)Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol. 26(8), 977-988.
Zerbe, P. and Bohlmann,J.(2014)Bioproducts, biofuels, and perfumes: conifer terpenoidsynthases and their potential for metabolic engineering.In:Phytochemicals–Biosynthesis, Function and Application.Springer International Publishing.85-107.
Zerbe, P., Hamberger,B., Yuen,M.M., Chiang,A., Sandhu,H.K., Madilao,L.L., Nguyen,A., Hamberger,B., Bach,S.S. and Bohlmann,J.(2013)Gene discovery of modular diterpenoid metabolism in nonmodel systems. Plant Physiol. 162(2), 1073-1091.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53078-
dc.description.abstract臺灣杉(Taiwania cryptomerioides Hayata)為臺灣特有種植物,其精油成分中的萜類化合物是目前研究的一大重點。過去臺灣杉相關之研究多為萜類化合物應用與開發,鮮少著眼於萜類合成酶之生合成機制,為了更了解臺灣杉之揮發性萜類(volatile terpenoids)的生合成,本研究以揮發性萜類合成酶作為研究目標。本研究從本實驗室所建構的臺灣杉次世代定序(next generation sequencing, NGS)資料庫中,獲得五個萜類合成酶的部分基因,再利用聚合酶連鎖反應(polymerase chain reaction,PCR)與cDNA末端快速增幅(rapid amplification of cDNA ends, RACE)的方式獲得基因全長,經由氣相層析質譜儀(GC-MS)的分析,分析出五個萜類合成酶的產物,並依其產物將此五個基因分別命名為Tc-αPin、Tc-Pre/Oci、Tc-βAOL、Tc-COL與Tc-GerD,其中Tc-αPin為單萜合成酶基因,其餘四者則為倍半萜合成酶基因。Tc-αPin、Tc-βAOL與Tc-GerD為單一產物之揮發性萜類合成酶,可分別生合成出單萜α-蒎烯(α-pinene)、倍半萜β-atlantol與倍半萜大根香葉烯 D(germacrene D);另外,Tc-Pre/Oci與Tc-COL則皆為雙功能萜類合成酶(bifunctional terpenoid synthases),能同時生合成出單萜產物與倍半萜產物。Tc-Pre/Oci之主要產物為倍半萜premnaspirodiene與單萜順式-β-羅勒烯(cis-β-ocimene),而Tc-COL之主要產物為蓽澄茄醇(cubebol)。在不同組織部位的基因表現量結果發現,五個基因皆在未成熟毬果中表現最多,多數基因在花與葉部中皆有表現,但在根部與木材中則只有Tc-αPin表現。此外,透過甲基茉莉酸(methyl jasmonate, MeJA)創傷處理實驗證實,五個基因皆受到MeJA誘導而使基因表現量增加。zh_TW
dc.description.abstractTaiwania cryptomerioides Hayata is an endemic species in Taiwan, and the terpenoidsofTaiwania cryptomerioides Hayata are major focus of current researches.Most previous studies about Taiwania cryptomerioides Hayatahave dealt withthe application and development of terpenoids, rarely focusing on the biosynthesis mechanisms of terpenoid synthases.In order to better understand the biosynthesis of volatile terpenoids of Taiwania cryptomerioides Hayata, this study chose volatile terpenoid synthases as the research target.In this study, weobtain five partial terpenoid synthase genes from the database of next generation sequencing(NGS)of volatile terpenoid synthases in Taiwania cryptomerioides Hayatafrom our lab. Then using polymerse chain reaction(PCR)and Rapid amplification of cDNA ends(RACE)methods, we successfully cloned five volatile terpenoid synthases from Taiwania cryptomerioides Hayata.Through using gas chromatography mass spectrometry(GC-MS)analysis,we find out the products of five terpenoid synthases. According to the compounds that synthases synthesize, they are called asTc-αPin,Tc-Pre/Oci, Tc-βAOL, Tc-COL andTc-GerD,respectively.Tc-αPin,Tc-βAOL and Tc-GerDare single product terpenoid synthases that have only one product, they can synthesizes monoterpenoidα-pinene, sesquiterpenoidβ-atlantol and sesquiterpenoidgermacrene D, respectively.In addition, Tc-COL andTc-Pre/Ociare bothbifunctionalterpenoid synthases, which can producemonoterpenoids and sesquiterpenoid simultaneously.The major product ofTc-Pre/Oci is sesquiterpenoid premnaspirodiene and monoterpenoid cis-β-Ocimene, while the major product of Tc-COL is sesquiterpenoid cubebol.We also report differential expression of genes involved in terpenoid metabolism in several tissues and in response to methyl jasmonate(MeJA).The expression of fiveterpenoidsynthase geneswere found in the immaturalcones, and all these genes were shown in flowers or leaves, but in the root and wood we only found the Tc-αPin expression.Furthermore,transcript levels of five terpenoidsynthase genes were induced in leaves in response to MeJA.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:43:03Z (GMT). No. of bitstreams: 1
ntu-104-R02625017-1.pdf: 5466903 bytes, checksum: 21f230bcd1b85e64ed79701a8d4a74b1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章、前言 1
第二章、前人研究 3
2.1 萜類合成酶種類 3
2.2 萜類合成酶之分群 3
2.3 揮發性萜類合成酶基因之內含子分布 4
2.4 揮發性萜類合成酶之生合成途徑(Biosynthesis pathway) 6
2.5 揮發性萜類合成酶之胺基酸序列與反應功能區域(Catalysis-initiating motifs) 8
2.6 揮發性萜類合成酶之生合成調控 10
2.6.1 誘導合成 10
2.6.2 器官發育調控 10
2.7 揮發性萜類之應用 11
第三章、材料與方法 13
3.1 實驗試材 13
3.2 臺灣杉總量RNA之萃取 13
3.3 臺灣杉揮發性萜類合成酶基因之選殖 14
3.4 目標蛋白質結構預測 17
3.5 萜類合成酶基因之內含子與外顯子剪接點判定 18
3.6 質體運輸胜肽及蛋白質分子量(MW)、等電點(pI)之預測 19
3.7 蛋白質表現質體之建構(Construction) 20
3.8 西方墨點法(Western Blotting) 21
3.9 重組蛋白質誘導大量表現 22
3.10 目標蛋白質之純化 23
3.11 目標蛋白質活性反應 24
3.11.1 以pET-21a(+)為載體之粗蛋白(crude protein)反應 24
3.11.2 純化蛋白質(purified protein)反應 25
3.12 目標蛋白質萜類產物分析-氣相層析質譜儀(GC-MS) 26
3.13 萜類合成酶序列比對與親緣關係樹狀圖分析 26
3.14 臺灣杉各組織表現量 27
3.15 甲基茉莉酸(Methyl jasmonate, MeJA)處理 28
第四章、結果 29
4.1 臺灣杉揮發性萜類合成酶基因之選殖 29
4.2臺灣杉揮發性萜類合成酶基因序列比對 30
4.3 臺灣杉揮發性萜類合成酶蛋白質結構預測 33
4.4臺灣杉揮發性萜類合成酶基因內含子分布情形 36
4.5 臺灣杉揮發性萜類合成酶表現質體之建構 38
4.6 表現臺灣杉揮發性萜類合成酶重組蛋白質 40
4.7 臺灣杉揮發性萜類合成酶重組蛋白質活性測定與產物分析 48
4.8臺灣杉揮發性萜類合成酶親緣關係樹狀圖分析 58
4.9 臺灣杉各組織的基因表現量 60
4.10 臺灣杉幼葉經MeJA處理後之mRNA表現量 62
第五章、討論 64
5.1 臺灣杉揮發性萜類合成酶之序列與蛋白質特性 64
5.2 臺灣杉揮發性萜類合成酶之親緣關係與演化分析 66
5.3 臺灣杉揮發性萜類合成酶可能之產物生合成機制 69
5.4 臺灣杉揮發性萜類合成酶之各組織基因表現量 73
5.5 臺灣杉揮發性萜類合成酶經MeJA處理後之mRNA表現量 75
5.6 臺灣杉揮發性萜類合成酶產物之生物活性與應用 77
第六章、結論 78
參考文獻 79
附錄 92
附錄表1、片段增幅引子序列 92
附錄表2、3’RACE引子序列 92
附錄表3、5’RACE引子序列 93
附錄表4、全長引子序列 93
附錄表5、蛋白質表現質體建構引子序列 94
附錄表6、RT-PCR(各組織mRNA表現量與MeJA處理)引子序列 95
附錄表7、親緣關係樹狀圖分析所使用之不同植物萜類合成酶胺基酸序列縮寫及登錄碼對照表 96
dc.language.isozh-TW
dc.subject大根香葉烯 Dzh_TW
dc.subject揮發性?類合成?zh_TW
dc.subject順式-β-羅勒烯zh_TW
dc.subject?類化合物zh_TW
dc.subject甲基茉莉酸zh_TW
dc.subject蓽澄茄醇zh_TW
dc.subjectα-蒎烯zh_TW
dc.subjectmethyl jasmonateen
dc.subjectvolatile terpenoid synthaseen
dc.subjectgermacrene Den
dc.subjectα-pineneen
dc.subjectcubebolen
dc.subjectcis-β-ocimeneen
dc.subjectterpenoiden
dc.title五個臺灣杉揮發性萜類合成酶基因選殖與性狀分析zh_TW
dc.titleGene Cloning and Characterization of Five Volatile Terpenoid Synthases from Taiwania cryptomerioides Hayataen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何政坤,王升陽,孫英玄,林詩舜
dc.subject.keyword?類化合物,揮發性?類合成?,大根香葉烯 D,α-蒎烯,蓽澄茄醇,順式-β-羅勒烯,甲基茉莉酸,zh_TW
dc.subject.keywordterpenoid,volatile terpenoid synthase,germacrene D,α-pinene,cubebol,cis-β-ocimene,methyl jasmonate,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2015-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved