請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53056完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李定國(Ting-Kuo Lee) | |
| dc.contributor.author | Huan-Kuang Wu | en |
| dc.contributor.author | 巫奐廣 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:41:40Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-11 | |
| dc.identifier.citation | [1] Yayu Wang et al. Submitted Preprint: Visualizing the evolution from the Mott insulator to a charge ordered insulator in lightly doped cuprates (2015).
[2] F. C. Zhang and T. M. Rice. Effective hamiltonian for the superconducting cu oxides. Phys. Rev. B, 37:3759–3761, Mar 1988. [3] J Zaanen, GA Sawatzky, and JW Allen. Band gaps and electronic structure of transition-metal compounds. Physical Review Letters, 55(4):418, 1985. [4] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen. Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys., 78:17–85, Jan 2006. [5] P. W. Anderson. Antiferromagnetism. theory of superexchange interaction. Phys. Rev., 79:350–356, Jul 1950. [6] J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang. Spin-bag mechanism of hightemperature superconductivity. Phys. Rev. Lett., 60:944–947, Mar 1988. [7] K. M. Shen, F. Ronning, D. H. Lu, W. S. Lee, N. J. C. Ingle, W. Meevasana, F. Baumberger, A. Damascelli, N. P. Armitage, L. L. Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen. Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett., 93:267002, Dec 2004. [8] O. Rösch, O. Gunnarsson, X. J. Zhou, T. Yoshida, T. Sasagawa, A. Fujimori, Z. Hussain, Z.-X. Shen, and S. Uchida. Polaronic behavior of undoped high- Tc cuprate superconductors from angle-resolved photoemission spectra. Phys. Rev. Lett., 95:227002, Nov 2005. [9] A. S. Mishchenko and N. Nagaosa. Electron-phonon coupling and a polaron in the t- j model: From the weak to the strong coupling regime. Phys. Rev. Lett., 93:036402, Jul 2004. [10] Yingying Peng, Jianqiao Meng, Daixiang Mou, Junfeng He, Lin Zhao, Yue Wu, Guodong Liu, Xiaoli Dong, Shaolong He, Jun Zhang, et al. Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor. Nature communications, 4, 2013. [11] AL Efros and BI Shklovskii. Coulomb gap and low temperature conductivity of disordered systems. Journal of Physics C: Solid State Physics, 8(4):L49, 1975. [12] BI Shklovskii and AL Efros. Springer series in solid-state sciences. In Electronic properties of doped semiconductors, page 45. Springer-Verlag Berlin, 1984. [13] P. C. Hammel, B. W. Statt, R. L. Martin, F. C. Chou, D. C. Johnston, and S-W. Cheong. Localized holes in superconducting lanthanum cuprate. Phys. Rev. B, 57:R712–R715, Jan 1998. [14] Z. Y. Weng, D. N. Sheng, Y.-C. Chen, and C. S. Ting. Phase string effect in the t-j model: General theory. Phys. Rev. B, 55:3894–3906, Feb 1997. [15] Zheng Zhu, Hong-Chen Jiang, Yang Qi, Chushun Tian, and Zheng-Yu Weng. Strong correlation induced charge localization in antiferromagnets. Scientific Reports, 3, sep 2013. [16] Mark S Hybertsen, EB Stechel, WMC Foulkes, and M Schlüter. Model for lowenergy electronic states probed by x-ray absorption in high-t c cuprates. Physical Review B, 45(17):10032, 1992. [17] E. Dagotto, F. Ortolani, and D. Scalapino. Single-particle spectral weight of a twodimensional hubbard model. Phys. Rev. B, 46:3183–3186, Aug 1992. [18] M. B. J. Meinders, H. Eskes, and G. A. Sawatzky. Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B, 48:3916–3926, Aug 1993. [19] B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M. Civelli, and G. Kotliar. Pseudogap induced by short-range spin correlations in a doped mott insulator. Phys. Rev. B, 73:165114, Apr 2006. [20] Henrik Kajueter and Gabriel Kotliar. New iterative perturbation scheme for lattice models with arbitrary filling. Phys. Rev. Lett., 77:131–134, Jul 1996. [21] Marcus Fleck, Alexander I. Liechtenstein, Andrzej M. Oleś, Lars Hedin, and Vladimir I. Anisimov. Dynamical mean-field theory for doped antiferromagnets. Phys. Rev. Lett., 80:2393–2396, Mar 1998. [22] Robert Peters and Norio Kawakami. Spin density waves in the hubbard model: A dmft approach. Phys. Rev. B, 89:155134, Apr 2014. [23] N. Bulut, D. J. Scalapino, and S. R. White. One-electron spectral weight of the doped two-dimensional hubbard model. Phys. Rev. Lett., 72:705–708, Jan 1994. [24] David Sénéchal and A-MS Tremblay. Hot spots and pseudogaps for holeand electron-doped high-temperature superconductors. Physical review letters, 92(12):126401, 2004. [25] David Sénéchal, P.-L. Lavertu, M.-A. Marois, and A.-M. S. Tremblay. Competition between antiferromagnetism and superconductivity in high- Tc cuprates. Phys. Rev. Lett., 94:156404, Apr 2005. [26] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke. Variational cluster approach to the hubbard model: Phase-separation tendency and finite-size effects. Phys. Rev. B, 74:235117, Dec 2006. [27] Aleksandr Krinitsyn, Sergey Nikolaev, and Sergey Ovchinnikov. Cluster size and shape effect on the electronic structure of the hubbard model within the norm-conserving cluster perturbation theory. Journal of Superconductivity and Novel Magnetism, 27(4):955–963, 2014. [28] Weng-Hang Leong, Shun-Li Yu, T. Xiang, and Jian-Xin Li. Localized in-gap state in a single-electron doped mott insulator. Phys. Rev. B, 90:245102, Dec 2014. [29] V. J. Emery. Theory of high-tc superconductivity in oxides. Phys. Rev. Lett., 58:2794–2797, Jun 1987. [30] 周崇斌 Chung-Pin Chou. 強相關聯電子系統下變分蒙地卡羅法的研究, 2007. [31] P. Horsch and W. Stephan. One- and two-particle excitations in doped mott-hubbard insulators. In Hans Kuzmany, Michael Mehring, and Jörg Fink, editors, Electronic Properties of High-Tc Superconductors, volume 113 ofSpringer Series in Solid-State Sciences, pages 351–367. Springer Berlin Heidelberg, 1993. [32] Sandro Sorella. Green function monte carlo with stochastic reconfiguration. Phys. Rev. Lett., 80:4558–4561, May 1998. [33] Sandro Sorella. Generalized lanczos algorithm for variational quantum monte carlo. Physical Review B, 64(2):024512, 2001. [34] T. K. Lee and C. T. Shih. Dispersion of a single hole in the t-j model. Phys. Rev. B, 55:5983–5987, Mar 1997. [35] K Kobayashi and H Yokoyama. Coexistence of superconductivity and antiferromagnetism and its effects on crossover as to correlation strength in hubbard model. Physics Procedia, 45:17–20, 2013. [36] Hisatoshi Yokoyama and Hiroyuki Shiba. Variational monte-carlo studies of hubbard model. iii. intersite correlation effects. Journal of the Physical Society of Japan, 59(10):3669–3686, 1990. [37] Philip Phillips. Colloquium : Identifying the propagating charge modes in doped mott insulators. Rev. Mod. Phys., 82:1719–1742, May 2010. [38] A Brooks Harris and Robert V Lange. Single-particle excitations in narrow energy bands. Physical Review, 157(2):295, 1967. [39] C. T. Chen, F. Sette, Y. Ma, M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, M. Schulter, S-W. Cheong, A. S. Cooper, L. W. Rupp, B. Batlogg, Y. L. Soo, Z. H. Ming, A. Krol, and Y. H. Kao. Electronic states in la 2−xsrxcuo 4+ δ probed by soft-xray absorption. Phys. Rev. Lett., 66:104–107, Jan 1991. [40] H. Romberg, M. Alexander, N. Nücker, P. Adelmann, and J. Fink. Electronic structure of the system la 2−xsrxcuo 4+ δ. Phys. Rev. B, 42:8768–8771, Nov 1990. [41] S. L. Cooper, G. A. Thomas, J. Orenstein, D. H. Rapkine, A. J. Millis, S-W. Cheong, A. S. Cooper, and Z. Fisk. Growth of the optical conductivity in the cu-o planes. Phys. Rev. B, 41:11605–11608, Jun 1990. [42] Ansgar Liebsch and Ning-Hua Tong. Finite-temperature exact diagonalization cluster dynamical mean-field study of the two-dimensional hubbard model: Pseudogap, non-fermi-liquid behavior, and particle-hole asymmetry. Phys. Rev. B, 80:165126, Oct 2009. [43] DC Peets, DG Hawthorn, KM Shen, Young-June Kim, DS Ellis, H Zhang, Seiki Komiya, Yoichi Ando, GA Sawatzky, Ruixing Liang, et al. X-ray absorption spectra reveal the inapplicability of the single-band hubbard model to overdoped cuprate superconductors. Physical review letters, 103(8):087402, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53056 | - |
| dc.description.abstract | 近期一個由P. Cai以及共同研究者,在低摻雜Bi-2201材料上的掃描穿隧能譜實驗,在氧的p軌域能帶和銅的upper Hubbard band(UHB)的能級中間發現了一些高能量的中間能階態的訊號。實驗結果顯示了這些中間能階態以及UHB之間在能量與光譜權重上的相互關係。在本論文中我們提出了一個簡潔的理論來解釋這些中間能階態的來源,並且藉由建立它們與UHB的形式來計算應證。我們的計算結果在隨摻雜濃度的演化上與實驗吻合。 | zh_TW |
| dc.description.abstract | A recent Scanning Tunneling Spectra (STS) measurement on underdoped Bi-2201 by Cai et al., discovered large energy in-gap states between Oxygen band and upper Hubbard band (UHB) of Cu. There is a strong interplay between the spectral weights and energies of the UHB and these in-gap states. We proposed a simple theory to explain the origin of these states by constructing explicitly the in-gap states and UHB states for a one-band Hubbard model. Our results show that the spatial variation of in-gap states and its evolution of spectral weight transfer from UHB are associated with the inhomogeneous local hole density. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:41:40Z (GMT). No. of bitstreams: 1 ntu-104-R02222003-1.pdf: 6973981 bytes, checksum: 2e99f69d7bfcbfd8c9afe4a5daced1b1 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 ii
Abstract iii Abstract iv 1 Introduction 1 2 Formalism and Method 5 2.1 Relations Between Charge Transfer Insulators and Single Band Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Stochastic Reconfiguration . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Trial Wave Function and Quasi-Particle States . . . . . . . . . . 12 3 Results and Discussion 19 3.1 Spectrum and upper-SDW States . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Dynamical Spectral Weight Transfer . . . . . . . . . . . . . . . . . . . . 21 3.3 Splitting at Different U . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Conclusion 26 A Hopping Amplitude of Doublon-Hole Formation 27 Bibliography 29 | |
| dc.language.iso | en | |
| dc.subject | 高溫超導體 | zh_TW |
| dc.subject | 赫伯德模型 | zh_TW |
| dc.subject | 中間能階態 | zh_TW |
| dc.subject | 自旋密度波 | zh_TW |
| dc.subject | high Tc superconductor | en |
| dc.subject | spin density wave | en |
| dc.subject | In-gap states | en |
| dc.subject | pseudogap | en |
| dc.subject | Hubbard model | en |
| dc.title | 低摻雜銅氧超導體的中間能階態 | zh_TW |
| dc.title | In-gap States in Underdoped Cuprate Superconductors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高英哲(Ying-Jer Kao),牟中瑜(Chung-Yu Mou) | |
| dc.subject.keyword | 高溫超導體,赫伯德模型,中間能階態,自旋密度波, | zh_TW |
| dc.subject.keyword | high Tc superconductor,Hubbard model,pseudogap,In-gap states,spin density wave, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
