請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53028完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | |
| dc.contributor.author | Bo-Yu Chen | en |
| dc.contributor.author | 陳柏羽 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:40:04Z | - |
| dc.date.available | 2020-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-11 | |
| dc.identifier.citation | [1] H. Hirosawa and H. Hirabayashi, “VLBI space observatory programme (VSOP)
satellite,” in IEEE Aerosp. Electron. Syst. Mag., vol. 10, pp 17–23, June 1995. [2] I. Angelov, H. Zirath, N. Rorsmann, “A new empirical model for HEMT and MESFET devices,” in IEEE Trans. Microwave Theory & Tech., vol 12, Dec 1992. [3] I. Angelov, L. Bengtsson, M. Garcia, “Extension of the Chalmers nonlinear HEMT and MESFET model,” in IEEE Trans. Microwave Theory & Tech., vol 44, Oct 1996. [4] 何柄翰,應用於毫米波波段之砷化鎵與矽鍺放大器之設計與砷化鎵毫米波 元件常溫與低溫模型之研究,國立台灣大學碩士論文,2013 年。 [5] H. Hirosawa and H. Hirabayashi, “VLBI space observatory programme (VSOP) satellite,” in IEEE Aerosp. Electron. Syst. Mag., vol. 10, pp 17–23, June 1995. [6] N. Shiramizu, “A 3-10 GHz bandwidth low-noise and low power amplifier for full-band UWB communications in 0.25-μm SiGe BiCMOS technology,” IEEE Radio Frequency Integrated Circuits Symposium Dig., pp 39-42, 12-14 Jun. 2005. [7] K. L. Deng, et al., “Design and analysis of novel high gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Trans. Microwave Theory Tech., vol.51, pp 2188-2196, Nov. 2003. [8] H. Q. Tserng, L. C. Witkowski. A. A. Ketterson, P. Saunier, and T. Jones, “K/Kaband low-noise embedded transmission lines (ETL) MMIC amplifiers,“ in IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp 2604-2610, Dec. 1998. 122 [9] B. Matinpour, “K-band receiver front-ends in a GaAs metamorphic HEMT process,” in IEEE Trans. Microwave Theory & Tech., vol. 49, no. 12, pp 2459-2463, Aug. 2002. [10] T. Tokumitsu, et al, “K-band and millimeter-wave MMICs for emerging commercial wireless applications,” in IEEE Asia-Pacific Microwave Conference (APMC), pp 648-653, June 2000. [11] P. S. Chen, et al., “Wideband low-noise-amplifier (LNA) with lg = 50 nm In- GaAs pHEMT and wideband RF chokes,” in IEEE MTT-S Int. Microwave Symp, June 2011. [12] R. Limacher, et al., “Broadband low-noise amplifiers for K- and Q-bands using 0.2 μmInP HEMT MMIC technology,” in Proc. IEEE CSIC Symp., pp 305-308, Oct. 2004. [13] T. M. Hsien, et al., 'An ultra-low power K-band low-noise amplifier co-designed with ESD protection in 40-nm CMOS,' in Proc. IEEE International Conference on IC Design & Technology (ICICDT), May 2011. [14] W.-C. Wang, et al., “A 1 V 23 GHz low-noise ampilier in 45 nm planar bulk- CMOS technology with high- above-IC inductors,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 326–328, May 2009. [15] H.-Y. Chang, et al., “65-nm CMOS dual-gate device for Ka-band broadband lownoise amplifier and high-accuracy quadrature voltage-controlled oscillator', IEEE Trans. Microwave Theory Tech, vol 61, pp 2402-2413, June 2013. [16] L. Aspemyr, et al., “A 15 GHz and a 20 GHz low noise amplifier in 90 nm RFCMOS,” in Silicon Monolithic Integr. Circuits RF Syst. Tech. Dig., pp. 387–390, Jan. 2006. 123 [17] A. Sayag, et al., “A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology,” in Proc. IEEE RFIC Symp., pp. 373–376, Apr. 2008.. [18] E. Monaco, et al., “Injection-locked CMOS frequency doublers for μ-wave and mm-wave applications,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565– 1574, Aug. 2010 [19] A. Y.-K. Chen, et al., 'A 36-80 GHz high gain millimeter-wave double-balanced active frequency doubler in SiGe BiCMOS,' IEEE IEEE Microw. Wireless Compon. Lett., Vol. 19, no.9, pp. 572-574, Sep. 2009. [20] D. Y. Jung et al., “A low-power, high-suppression V-band frequency doubler in 0.13-μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.8, pp. 551– 553, Aug. 2008. [21] P.-H. Tsai, et al., 'Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun,' IEEE Trans. Microw. Theory Tech., vol. 61, no.5, pp. 1913-1923, May 2013. [22] N. Mazor, et al., “A SiGe ku-band frequency doubler with 50% bandwidth and high harmonic suppression,” IEEE MTT-S Int. Microwave Symp., June 2014. [23] B.-J. Huang, et al., “A 40-to-76 GHz balanced distributed doubler in 0.13-μm CMOS technology,” in Proc. EuMC, 27-28, pp. 17-19, Oct. 2008. [24] T.-Y. Yang et al., “A 25–75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275–277, Apr. 2008. [25] J. Chen, et al., 'A 50–70GHz frequency doubler in 90nm CMOS,' IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 18-20, pp.1-3, Sept. 2012. 124 [26] V. Puyal, et al., “DC-100-GHz frequency doublers in InP DHBT technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp.1311–1318, Apr. 2005. [27] K. Nishikawa, et al., “Miniaturized and broadband V-band balanced frequency doubler for highly integrated 3-D MMIC,” in IEEE MTT-S Int. Dig., vol. 1, pp.351–354, Jun. 2002. [28] H. Zarei, et al., “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, no. 8, vol. 54, pp. 1647-1656, Aug. 2007. [29] J.-C. Wu, et al., “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with Low loss variation,” IEEE RFIC Symp. 2008. [30] M.-D. Tsai et al., “60 GHz passive and active RF-path phase shifters in silicon,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 223–226. [31] Po-Yu Chen, et al., “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no 5, pp. 1410-1424, May. 2004. [32] Pei-Si Wu, et al., “New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no 1, pp. 10-19, Jan. 2006. [33] Pei-Si Wu, et al., “A 40-74 GHz amplitude/phase control MMIC using 90-nm CMOS technology,” in European Microwave Integrated Circuits Conference, Oct. 2007, pp. 115-118. [34] W.-J. Tseng, et al., ” A miniature switching phase shifter in 0.18-μm CMOS,” in IEEE Asia-Pacific Microwave Conference (APMC), pp 2132-2135, Dec. 2009. 125 [35] B.-W. Min, et al., “Ka-band BiCMOS 4-bit phase shifter with integrated LNA for phased array T/R modules,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 479- 482 Jun. 2007. [36] D.-W. Kang, et al., “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 1, pp. 294-301, Jan. 2006. [37] Matthew A. et al., “Source of phase error and design considerations for siliconbased monolithic high-pass/low-pass microwave phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp.4032–4040, Dec. 2006. [38] C. Wang, et al., “CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band,” IEEE Trans. Microwave Theory and Tech.,” vol. 59, no. 7, pp. 1778–1786, Jul. 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53028 | - |
| dc.description.abstract | 這本論文中包含了三個部分,第一個部分是用於天文應用的K 頻段pHEMT
製程高增益低雜訊放大器,模擬結果顯示這個低雜訊放大器在18.5 GHz 到30GHz 的頻率範圍間擁有29 dB 的小訊號增益,在K 頻段內的平均雜訊指數是2.1dB。整體的晶片尺寸是2 平方毫米,直流消耗是27 毫瓦,而這個直流消耗滿足於未來可能的低溫操作。 第二部分是一個CMOS 90 奈米製程具有諧波抑制功能的寬頻二倍頻器,這個倍頻器採用平衡式疊接架構,而這個結構擁有良好的奇倍頻抑制效果,而四倍頻以及更高項次的偶次諧波則由一個橢圓低通濾波器濾除。在5 dBm 的輸入功率下,這個倍頻器的在42 到90 GHz 的轉換增益為 -8 到 -11 dB,而基頻抑制則大於20 dBc,四倍頻抑制則大於18 dBc,整體的直流功耗為20 毫瓦,總面積為0.33 平方毫米。 最後是一個使用CMOS 90 奈米製程的Ka 頻段相移器以及一個可調增益放 大器。相移器採用開關式相移器的架構,這種架構能夠減輕系統的控制電路設計難度,並且節省直流功耗。在相位陣列系統中,相移器負責控制天線的輸入訊號相位,而可調增益大器則是用來彌補相移器在不同操作模式時不同的輸入損耗。量測結果顯示這個初始設計的相移器之輸入損號為9 dB 至13 dB;但相位誤差大於11.25°,不符合設計規格,因此在討論章節中記錄了兩個重新設計之相移器的模擬與量測結果。可調增益大器的最大增益為19 dB,並擁有6 dB 的增益調整範圍,可以達到彌補相移器輸入損耗差異的功能。 | zh_TW |
| dc.description.abstract | This thesis contains three parts. The first part is a K-band high gain low noise amplifier in WIN 0.1-μm process for radio astronomy application. The measurement results of the low noise amplifier show the small signal gain is 29 dB from 18.5GHz to 30 GHz and the measured average noise figure is 2.1 dB around K-band. The total dc
consumption is 27 mW and this satisfies the dc power limitation of cryogenic operation in the future. The second part of the thesis is a broadband frequency doubler with harmonic suppression technique in 90 nm CMOS process. The balanced cascode structure features good odd order harmonic suppression, and the fourth and higher order even harmonic is suppressed by an elliptic low-pass filter. The measured conversion loss of this frequency doubler is 8 to 11 dB from 42 to 90 GHz at 5-dBm input drive. The fundamental rejection ratio is better than 20 dBc and the fourth order harmonic rejection is better than 18 dBc. The total dc power is 20 mW, and total chip area is 0.33 mm2. The third part is a Ka-band phase shifter and variable gain amplifier. The phase shifter is a switch type phase shifter which can save dc power and relief the control circuit in phase array system. The phase shifter controls the input signal phase of theantenna, and variable gain amplifier is used to compensate the loss difference of different phase shifter operation state. The measured insertion loss of the initial design of the phase shifter is 9 lowest to 13 dB but the phase error is larger than 11.25°. Therefore two redesigned phase shifter are simulated and measured and presented in discussion. The variable gain amplifier shows peak gain of 19 dB with 6-dB gain tuning range and this can cover the phase shifter loss difference of different phase state. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:40:04Z (GMT). No. of bitstreams: 1 ntu-104-R02942021-1.pdf: 12078332 bytes, checksum: 68495d00aa46a2ca8e6048a64b31532a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝................................................... i
中文摘要...............................................iii ABSTRACT ............................................ iv CONTENTS.............................................. v LIST OF FIGURES...................................... vii LIST OF TABLES ...................................... xix Chapter 1 Introduction........................................... 1 1.1 Motivation ........................................ 1 1.2 Literature Survey................................................. 2 1.2.1 Low noise amplifier.............................. 2 1.2.2 Frequency doubler................................ 4 1.2.3 Switch type phase shifter and variable gain amplifier ....... 5 1.3 Contributions........................ 6 1.4 Thesis Organization........................................... 7 Chapter 2 Design a High Gain K-band LNA in GaAs 0.1-μm pHEMT for Radio Astronomy Application................ 9 2.1 Design procedure of the K-band LNA ............. 9 2.1.1 Device Selection ................................ 9 2.1.2 Device Modeling ............................ 17 2.1.3 Circuit Design and Simulation Results .......... 24 2.2 Measurement Results ............................ 29 2.3 Summary ......................... 31 Chapter 3 Design a Broadband Frequency Doubler in CMOS 90nm process............34 3.1 Design procedure of the broadband frequency doubler .............. 34 3.1.1 Circuit Design ............................. 34 3.1.2 Simulation Results ............................ 43 3.2 Measurement Results ........................ 47 3.3 Summary ....................................... 52 Chapter 4 Design a Ka-band 4-bit Switch Type Phase Shifter and Variable Gain Amplifier 54 4.1 Switch Type Phase Shifter ....................... 55 4.1.1 Circuit design ................... 55 4.1.2 Simulation Result of the Switch Type Phase Shifter ....... 62 4.1.3 Measurement Result of the Switch Type Phase Shifter ... 66 4.1.4 Discussion and Redesign ................... 71 4.2 Variable Gain Amplifier ....................... 108 4.2.1 Circuit design ............................... 108 4.2.2 Simulation Result of the Variable Gain Amplifier ......... 110 4.2.3 Measurement Result of the Variable gain Amplifier ...... 113 4.2.4 VGA cascade with phase shifter ....... 118 4.3 Summary ............... 119 Chapter 5 Conclusion ................... 120 Reference ........ 121 Appendix ....................... 126 | |
| dc.language.iso | en | |
| dc.subject | 單晶微波積體電路 | zh_TW |
| dc.subject | 砷化鎵 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | MMIC | en |
| dc.subject | GaAs | en |
| dc.subject | CNOS | en |
| dc.title | 微波砷化鎵低雜訊放大器與高速無線通訊系統之矽基元件研製 | zh_TW |
| dc.title | Design of Microwave GaAs Low Noise Amplifier and Silicon-based Components for High Speed Wireless Communication Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林坤佑,章朝盛,蔡作敏,黃天偉 | |
| dc.subject.keyword | 單晶微波積體電路,砷化鎵,互補式金屬氧化物半導體, | zh_TW |
| dc.subject.keyword | MMIC,GaAs,CNOS, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 11.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
