請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53005完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | |
| dc.contributor.author | Zi-Yun Lin | en |
| dc.contributor.author | 林子勻 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:38:48Z | - |
| dc.date.available | 2020-10-12 | |
| dc.date.copyright | 2015-10-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-12 | |
| dc.identifier.citation | Almenoff, J. S., DuMouchel, W., Kindman, L. A., Yang, X., Fram, D. (2003). Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post‐marketing setting. Pharmacoepidemiology and drug safety, 12(6), 517-521. Bíró, I., Szabó, J., Benczúr, A. A. (2008). Latent dirichlet allocation in web spam filtering. Paper presented at the Proceedings of the 4th international workshop on Adversarial information retrieval on the web. Bate, A., Lindquist, M., Edwards, I., Olsson, S., Orre, R., Lansner, A., De Freitas, R. M. (1998). A Bayesian neural network method for adverse drug reaction signal generation. European journal of clinical pharmacology, 54(4), 315-321. Blei, D. M., Ng, A. Y., Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022. Choi, C. A., Chang, M. J., Choi, H. D., Chung, W.-Y., Shin, W. G. (2013). Application of a drug-interaction detection method to the korean national health insurance claims database. Regulatory Toxicology and Pharmacology, 67(2), 294-298. DuMouchel, W. (1999). Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. The American Statistician, 53(3), 177-190. Evans, S., Waller, P. C., Davis, S. (2001). Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and drug safety, 10(6), 483-486. FDA. (2015). The Drug Development Process. Retrieved 11 Jul, 2015, from http://www.fda.gov/ForPatients/Approvals/Drugs/default.htm Harpaz, R., Chase, H. S., Friedman, C. (2010). Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC bioinformatics, 11(Suppl 9), S7. Herbrich, R., Graepel, T., Obermayer, K. (1999). Large margin rank boundaries for ordinal regression. Advances in neural information processing systems, 115-132. Hsieh, T.-H. (2014). Detecting Drug Safety Signals from National Taiwan Health Insurance Research Database: A Learning to Rank Approach. Iyer, S. V., LePendu, P., Harpaz, R., Bauer-Mehren, A., Shah, N. H. (2013). Learning Drug-Drug Interactions from the Unstructured Text of Electronic Health Records. Järvelin, K., Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446. Joachims, T. (1999). Making large scale SVM learning practical: Universität Dortmund. Lazarou, J., Pomeranz, B. H., Corey, P. N. (1998). Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. Jama, 279(15), 1200-1205. Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3), 225-331. Mann, R. D., Andrews, E. B. (2007). Pharmacovigilance: John Wiley Sons. Munger, M. A. (2010). Polypharmacy and combination therapy in the management of hypertension in elderly patients with co-morbid diabetes mellitus. Drugs aging, 27(11), 871-883. Norén, G. N., Sundberg, R., Bate, A., Edwards, I. R. (2008). A statistical methodology for drug–drug interaction surveillance. Statistics in medicine, 27(16), 3057-3070. Phan, X.-H., Nguyen, L.-M., Horiguchi, S. (2008). Learning to classify short and sparse text web with hidden topics from large-scale data collections. Paper presented at the Proceedings of the 17th international conference on World Wide Web. Pirmohamed M, O. M. (1998). Drug interactions of clinical importance (R. E. F. D M Davies, H de Glanville Ed. 5th ed.): Chapman and Hall Medical. Qian, Y., Ye, X., Du, W., Ren, J., Sun, Y., Wang, H., . . . He, J. (2010). A computerized system for detecting signals due to drug–drug interactions in spontaneous reporting systems. British journal of clinical pharmacology, 69(1), 67-73. Thakrar, B. T., Grundschober, S. B., Doessegger, L. (2007). Detecting signals of drug–drug interactions in a spontaneous reports database. British journal of clinical pharmacology, 64(4), 489-495. Van Puijenbroek, E. P., Bate, A., Leufkens, H. G., Lindquist, M., Orre, R., Egberts, A. C. (2002). A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiology and drug safety, 11(1), 3-10. Van Puijenbroek, E. P., Egberts, A. C., Meyboom, R. H., Leufkens, H. G. (1999). Signalling possible drug–drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole. British journal of clinical pharmacology, 47(6), 689-693. WHO. (1969). International drug monitoring: the role of the hospital, report of a WHO meeting [held in Geneva from 18 to 23 November 1968]. WHO. (2002). The importance of pharmacovigilance: World Health Organization. Yang, H., Yang, C. C. (2013). Harnessing social media for drug-drug interactions detection. Paper presented at the Healthcare Informatics (ICHI), 2013 IEEE International Conference on. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53005 | - |
| dc.description.abstract | 藥物在上市前都會經過臨床試驗的階段,但受制於試驗時間長度及受試者人數的關係,依舊難以完整得知藥物在人體身上的作用效果,因此,藥物的上市後監督就變得非常重要。藥物主動監視(Pharmacovigilance)是指對上市藥品的實際使用狀態進行分析、評估,並進一步預防可能發生的副作用。有多種原因能導致副作用的發生,其中一項即為藥物交互作用。因此若能偵測藥物交互作用的行為,即能避免損害發生。藥物主動監視主要可透過兩種資料來源進行分析,分別是不良反應通報系統,和電子健康紀錄。雖然不良反應通報系統已被研究證明為一可信賴的資料來源,但其存在一些問題,例如通報率低、涵蓋人口不明等,電子健康紀錄逐漸成為替代的分析資料。 在本篇研究中,使用了台灣健保資料庫來分析藥物交互作用的行為,希望能預測出那些導致副作用的藥物交互作用配對,稱之為藥物交互作用訊號。我們提出了一個方法,藉由排序學習法結合多個常用的偵測指標,去預測藥物交互作用訊號的名單,並對其依可疑程度進行排序。由於此方法為一監督式學習法,我們邀請了藥學專家幫忙進行資料標註。本研究選擇心血管疾病和肝毒作為檢測的副作用疾病。研究結果顯示,我們所提出的方法能夠有效的提升藥物交互作用偵測的準確度,並能將此預測的排序名單,提供給醫藥專家做進一步的驗證及分析。 | zh_TW |
| dc.description.abstract | It is difficult to know the complete safety information about a new drug during pre-marketing trails. Because of this, post-marketing monitoring of drug safety becomes extremely important. Pharmacovigilance (PhV) is the pharmacological science relating to the collection, detection, assessment, monitoring, and prevention of adverse effects with pharmaceutical products. One of the causes of adverse events is drug-drug interactions (DDIs). If we can detect the behaviors of DDIs, the damage of adverse events can be decreased. Two major data sources that can be employed for PhV include spontaneous reporting system (SRS) and electronic health record (EHR). Since SRS has some inherent problems such as underreporting or unknown denominator, recent research attention has started to focus on the use of EHR for PhV purposes. In our study, the objective is to identify DDIs that cause adverse events, which we call as DDI signals. We propose a novel method to predict and rank signals by using Taiwan’s National Health Insurance Research Database. We employ the learning to rank approach and exploit multiple measures as the predictors for ranking signals. For training and evaluation purposes, we invite domain experts to annotate datasets for ranking-model training and evaluation purposes. Cardiovascular events and hepatotoxicity are selected to be the detected diseases. The empirical evaluation results show that our proposed method has the ability of predicting and ranking DDI signals, which can support pharmaceutical professionals to do further analysis and investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:38:48Z (GMT). No. of bitstreams: 1 ntu-104-R02725005-1.pdf: 1537628 bytes, checksum: 6a37c7faec9c97ba061ed123cf19c3e8 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 論文口試委員審定書 ii 致謝 iii 摘要 iv Abstract v List of Contents vi List of Figures ix List of Tables x Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation and Objective 4 Chapter 2 Literature Review 6 2.1 Spontaneous Reporting Systems (SRSs) 6 2.1.1 Definition and Examples of SRSs 6 2.1.2 Existing SRS-based Methods 6 2.1.3 Traits of SRS-based Methods 9 2.2 Electronic Health Records (EHRs) 10 2.2.1 Definition and Examples of EHRs 10 2.2.2 Existing EHR-based Methods 10 2.2.3 Traits of Existing EHR-based Methods 11 2.3 Research Gap 12 Chapter 3 Proposed Method 15 3.1 Data Preprocessing 16 3.1.1 Generating Patient Visits 16 3.1.2 Grouping Disease 19 3.1.3 Generating DDI Sequences 19 3.1.4 Generating All DDI Pairs 20 3.1.5 Calculating Measures 21 3.2 Learning 22 3.2.1 Assigning Relevance Scores 23 3.2.2 Ranking Model – Learning to Rank 23 3.3 Ranking 24 Chapter 4 Evaluation and Results 25 4.1 Data 25 4.2 Evaluation Design 27 4.2.1 Evaluation Criteria 27 4.2.3 Evaluation Procedure 28 4.3 Evaluation Results 28 4.3.1 Feature Selection 28 4.3.2 Ranking Results 29 4.4 Additional Experiments 30 4.4.1 Experiment 1: Effects of Different Feature Sets 31 4.4.2 Experiment 2: Effects of Interaction Windows 36 4.4.3 Experiment 3: Effects of Training Sizes 37 Chapter 5 Conclusion and Future Work 40 5.1 Conclusion 40 5.2 Future Work 41 References 42 | |
| dc.language.iso | en | |
| dc.subject | 藥物主動監視 | zh_TW |
| dc.subject | 藥物交互作用 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 排序學習法 | zh_TW |
| dc.subject | 台灣健保資料庫 | zh_TW |
| dc.subject | Learning to rank | en |
| dc.subject | NHIRD | en |
| dc.subject | Pharmacovigilance | en |
| dc.subject | Drug-drug interaction | en |
| dc.subject | Data mining | en |
| dc.title | 從台灣健保資料庫找尋導致副作用的藥物交互作用配對 | zh_TW |
| dc.title | Mining Adverse Events Caused by Drug-drug Interactions from National Health Insurance Research Database | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊錦生,蕭斐元,李彥賢 | |
| dc.subject.keyword | 藥物交互作用,資料探勘,排序學習法,台灣健保資料庫,藥物主動監視, | zh_TW |
| dc.subject.keyword | Drug-drug interaction,Data mining,Learning to rank,NHIRD,Pharmacovigilance, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-12 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
