請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52968完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀男 | |
| dc.contributor.author | Tai-Yun Kao | en |
| dc.contributor.author | 高岱筠 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:36:40Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-12 | |
| dc.identifier.citation | 于明超,李卓佳,文國樑,2007。芽孢桿菌在水產養殖應用中的研究與進展。廣東農業科學,78-81。
冉繁華,陳秀男,2006。益生菌在養殖管理系統的研發與應用。水產試驗所特刊,第8期,頁167-190。 朱鈺婷,2014。不同益生菌對白蝦密閉式養殖系統中水質與成長之影響。國立臺灣海洋大學水產養殖研究所碩士論文。 李卓佳,郭志勛,馮娟,張漢華,楊鶯鶯,2006。應用芽孢杆菌調控蝦池微生態的初步研究。海洋科學,30,28-31。 東秀珠,蔡妙英,2001。常見細菌系統鑑定手冊。科學出版社,北京。 林春友,2005。光合細菌及其在水產養殖中應用研究進展。水利漁業。 夏來根,宋學宏,張磊磊,張衛業,孟祥雨,張鋮,趙杰,顧秋明,2012。四種微生態製劑對蝦池水質及青蝦生長性能的影響。水生態學雜誌。 孫冬岩,孫鳴,潘寶海,2009。枯草芽孢桿菌對水質淨化作用的研究。飼料研究, 58-59。 高磊,包衛洋,張天文,單洪偉,馬甡,2013。水體碳氮比對芽孢桿菌、乳酸菌與弧菌生長、拮抗作用及菌體碳氮比的影響。中國海洋大學學報。 章潔香,張瑜斌,張才學,孫省利,2010。高位蝦池水體細菌和弧菌的數量變化及影響因素。集美大學學報:自然科學版。 15,327-332。 張景盛,2003。益生菌對改善水質與抑制弧菌生長之影響。國立臺灣海洋大學水產養殖研究所碩士論文。 陳秀男,1994。蝦病之管理對策。 陳秀男,2002。有益微生物在蝦類養殖之研發與應用。 陳建初,1981。水質分析。 單洪偉,高磊,馬甡,魏大鵬,張家松,2013。不同C:N條件下一株溶藻弧菌對不同種類氮源的吸收特性。中國水產科學,20,1-10。 湯寶貴,徐中文,張金燕,2007。枯草芽孢菌的培養條件及對水質的淨化作用。淡水漁業,37-3。 黃世鈴,楊豐隆,黃麗玲,2013。在水產養殖場使用光合菌的益處。水試專訓。 黃旭田,2014。新興對蝦疾病----早期死亡綜合症或急性肝胰臟壞死綜合症(上)。 水產動物防疫簡訊。 楊登傑,2011。益生菌醱酵槽技術建立與水質處理之應用。國立臺灣海洋大學水產養殖研究所碩士論文。 劉冠甫,鄭金華,陳紫女英,2013。蝦類早期死亡綜合症/急性肝胰臟壞死綜合症---致病原因,行政院農委會水產試驗所。 劉群,黃捷,楊昊霖,楊冰,劉筍,王海亮,王勤濤,劉飛,張慶利,2014。疑患EMS/ AHPNS對蝦中檢出黃頭病毒的一種新株型。海洋與湖沼。 蔡宜峰,2008。有機質肥料的研發與應用。行政院農業委員會台中區農業改良場。 蔡章潔,2013。EMS病原或為罕見副溶血弧菌。養魚世界。. 魏明奎,2007。微生物學。中國輕工業出版社。 顧宇飛,羅嶼,馬文漪,周子元,蔡後建,2000。溫度、碳、氮、磷對一株芽孢杆菌生長的影響。應用與環境生物學報。6,86-89。 ÆsØy, A., Ødegaard, H., Bach, K., Pujol, R., Hamon, M., 1998. Denitrification in a packed bed biofilm reactor (BIOFOR) -- Experiments with different carbon sources. Water Res. 32, 1463-1470. Ahmad, T., Tjaronge, M., Suryati, E., 2013. Performances of tiger shrimp culture in environmentally friendly ponds. Indonesian Journal of Agricultural Science. 4. Alexander, M., 1977. Introduction to soil microbiology. John Wiley & Sons. Aly, S.M., Ahmed, Y.A.G., Ghareeb, A.A.A., Mohamed, M.F., 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 25, 128-136. Armstrong, D.A., 1979. Nitrogen toxicity to crustacea and aspects of its dynamics in culture systems, Proceedings of the Second Biennial Crustacean Health Workshop. Texas A & M University Sea Grant Report TAMU–SC–79–114, pp. 329-360. Armstrong, D.A., Stephenson, M.J., Knight, A.W., 1976. Acute toxicity of nitrite to larvae of the giant Malaysian prawn, Macrobrachium rosenbergii. Aquaculture. 9, 39-46. Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E., 2008. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture. 280, 117-123. Austin, B., 1985. Antibiotic Pollution from Fish Farms - Effects on Aquatic Microflora. Microbiol Sci. 2, 113-117. Avnimelech, Y., 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176, 227-235. Bagheri, T., Hedayati, S.A., Yavari, V., Alizade, M., Farzanfar, A., 2008. Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk J Fish Aquatic Sc. 8, 43-48. Balcazar, J.L., Rojas-Luna, T., 2007. Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei). Curr. Microbiol. 55, 409-412. Bandyopadhyay, P., & Mohapatra, P. K. D., 2009. Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catla catla (Ham.). Fish Physiol. Biochem. 35, 467-478. Bidhan, C.D., Meena, D.K., Behera, B.K., Das., P., Das Mohapatra, P.K., Sharma, A.P., 2014. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol. Biochem, DIO 10.1007/s10695–10013 –19897-10690. Boopathy, R., Kern, C., Corbin, A., 2015. Use of Bacillus consortium in waste digestion and pathogen control in shrimp aquaculture. International Biodeterioration & Biodegradation. Burdett, I.D., 1988. Structure, growth and division for the Bacillus subtilis cell sulfure. Can. J. Microbiol., 43: 373-380. Cameron, J.N., 1971. Methemoglobin in erythrocytes of rainbow trout. Comp. Biochem. and Physiol. Part A: Physiol. 40, 743-749. Campbell, J.W., 1973. Nitrogen excretion. Comparative animal physiology. 1, 279-316. Chen, J.C., Kou, Y.Z., 1992. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture. 104, 249-260. Chen, J.-C., Liu, P.-C., Lei, S.-C., 1990. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture. 89, 127-137. Chiu, K.H., Liu, W.S., 2014. Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (Oreochromis mossambicus x Oreochromis niloticus). Aquaculture. 418, 32-38. Colt, J., Tchobanoglous, G., 1976. Evaluation of the short-term toxicity of nitrogenous compounds to channel catfish, Ictalurus punctatus. Aquaculture. 8, 209-224. Dalmin, G., Kathiresan, K., Purushothaman, A., 2001. Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem. Indian J Exp. Biol. 39, 939-942. Eroglu, E., Gunduz, U., Yucel, M., Turker, L., Eroglu, I., 2004. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrogen Energ. 29, 163-171. FAO, 2013. Culprit behind massive shrimp die-offs in Asia unmasked. Food and Agriculture Organization of the United Nations, http://www.fao.org/news/story/zh/item/175486/icode/. Farzanfar, A., 2006. The use of probiotics in shrimp aquaculture. FEMS Immunology & Medical Microbiology. 48, 149-158. Gao, L., Shan, H.W., Zhang, T.W., Bao, W.Y., Ma, S., 2012. Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture. 342, 89-96. Gherna, R., Pienta, P., Cote, R., 1989. ATCC Catalogue of Bacteria and Bacteriophages. American Type Culture Collection, Rockville, Md. Ghosh, S., Sinha, A., Sahu, C., 2007. Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquac Res. 38, 518-526. Goldman, J.C., Dennett, M.R., 1991. Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar Biol. 109, 369-378. Goldman, J.C., Caron, D.A., Dennett, M.R., 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio. Limnol Oceanogr. 32, 1239-1252. Grave, K., Lillehaug, A., Lunestad, B.T., Horsberg, T.E., 1999. Prudent use of antibacterial drugs in Norwegian aquaculture? Surveillance by the use of prescription data. Acta Vet Scand. 40, 185-195. Gullian, M., Thompson, F., Rodriguez, J., 2004. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture. 233, 1-14. Guo, D.L., Mitchell, R.J., Hendricks, J.J., 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia. 140, 450-457. Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J., 2004. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture. 241, 179-194. Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J., 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture. 252, 248-263. Harwood, C.R., Stephenson., K., 1989. Bacillus. Wiley Online Library. Hong, H.A., Duc, L.H., Cutting, S.M., 2005. The use of bacterial spore formers as probiotics. Fems Microbiol Rev. 29, 813-835. Hu, J., Li, D., Tao, Y., Zhang, J., Zhong, Q., He, X., Wang, X., 2009. Microbial diversity of nitrite-oxidizing and heterotrophic bacterial communities under different C/N ratios. Chin J Appl. Environ. Biol. 15, 351-355. Isaacs, S.H., Henze, M., 1995. Controlled carbon source addition to an alternating nitrification-denitrification wastewater treatment process including biological P removal. Water Res. 29, 77-89. Izquierdo, M.S., Fernandez-Palacios, H., Tacon, A.G.J., 2001. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture. 197, 25-42. Kumar, R., Mukherjee, S.C., Prasad, K.P., Pal, A.K., 2006. Evaluation of Bacillus subtilis as a probiotic to Indian major carp Labeo rohita (Ham.). Aquatic Res. 37, 1215-1221. Landy, M., Warren, G. H., RosenmanM, S. B., & Colio, L. G. (1948). Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Exp. Biol. Med. 67(4), 539-541. Lazado, C.C., Caipang, C.M.A., 2014. Mucosal immunity and probiotics in fish. Fish Shellfish Immun. 39, 78-89. Lee, H.J., Park, J.Y., Le, T.H., Kim, Y.H., Min, J., 2011. Effect of mixed organic compounds extracted from Rhodobacter sphaeroides on Daphnia magna (water flea). World J Microb Biot. 27, 2845-2849. Lloyd, R., Orr, L.D., 1969. The diuretic response by rainbow trout to sub-lethal concentrations of ammonia. Water Research. 3, 335-344. Maeda, M., Nogami, K., 1989. Some aspects of the biocontrolling method in aquaculture. Current topics in marine biotechnology. 399. Mangum, C., Silverthorn, S., Harris, J., Towle, D., Krall, A., 1976. The relationship between blood pH, ammonia excretion and adaptation to low salinity in the blue crab Callinectes sapidus. Journal of Experimental Zoology. 195, 129-136. Martinez Cruz, P., Ibanez, A.L., Monroy Hermosillo, O.A., Ramirez Saad, H.C., 2012. Use of probiotics in aquaculture. ISRN microbiology. 2012, 916845. Merrifield, D.L., Bradley, G., Baker, R.T.M., Davies, S.J., 2010. Probiotic applications for rainbow trout (Oncorhynchus mykiss, Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquacult Nutr. 16, 496-503. Merugu, R., Prashanthi, Y., Sarojini, T., & Badgu, N., 2014. Bioremediation of waste waters by the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides SMR 009. International Journal of Research in Environmental Science and Technology, 4(1), 16-19. Mohapatra, S., Chakraborty, T., Kumar, V., Deboeck, G., Mohanta, K., 2013. Aquaculture and stress management: a review of probiotic intervention. Journal of animal physiology and animal nutrition. 97, 405-430. Moriarty, D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture. 164, 351-358. Nemutanzhela, M., Roets, Y., Gardiner, N., Lalloo, R., 2014. The use and benefits of Bacillus based biological agents in aquaculture. Newaj-Fyzul, A., Al-Harbi, A., Austin, B., 2014. Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture. 431, 1-11. Newaj-Fyzul, A., Adesiyun, A.A., Mutani, A., Ramsubhag, A., Brunt, J., Austin, B., 2007. Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol. 103, 1699-1706. Nimrat, S., Suksawat, S., Boonthai, T., Vuthiphandchai, V., 2012. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet Microbiol. 159, 443-450. Olson, K., Fromm, P., 1971. Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comparative Biochemistry and Physiology Part A: Physiology. 40, 999-1007. P.L. Loo, S. Vikineswary, Chong, V.C., 2013. Nutritional value and production of three species of purple non-sulphur bacteria grown in palm oil mill effluent and their application in rotifer culture. Aquacult Nutr. Pandiyan, P., Balaraman, D., Thirunavukkarasu, R., George, E.G.J., Subaramaniyan, K., Manikkam, S., Sadayappan, B., 2013. Probiotics in aquaculture. Drug Invention Today. 5, 55-59. Pochana, K., Keller, J., 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology. 39, 61-68. Priest, F.G., 1989. Isolation and identification of aerobic endospore-forming bacteria. In Bacillus (pp. 27-56). Springer US. Priest, F.G., 1993. Systematics and ecology of Bacillus. Bacillus subtilis and other Gram-positive bacteria, 3-16. Quan, Z.X., Jin, Y.S., Yin, C.R., Lee, J.J., Lee, S.T., 2005. Hydrolyzed molasses as an external carbon source in biological nitrogen removal. Bioresource Technol. 96, 1690-1695. Raida, M.K., Larsen, J.L., Nielsen, M.E., Buchmann, K., 2003. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). Journal of fish diseases. 26, 495-498. Ran, C., Carrias, A., Williams, M.A., Capps, N., Dan, B.C.T., Newton, J.C., Kloepper, J.W., Ooi, E.L., Browdy, C.L., Terhune, J.S., Liles, M.R., 2012. Identification of Bacillus strains for biological control of catfish pathogens. PloS One. 7. Rengpipat, S., Tunyanun, A., Fast, A.W., Piyatiratitivorakul, S., Menasveta, P., 2003. Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp Penaeus monodon fed a Bacillus probiotic. Diseases of aquatic organisms. 55, 169-173. Rigos, G., Bitchava, K., Nengas, I., 2010. Antibacterial drugs in products originating from aquaculture: assessing the risks to public welfare. Mediterr Mar Sci. 11, 33-41. Rodrguez, Mora F., Ferrara de Giner, G., Rodrguez Andara, A., Lomas Esteban, J., 2003. Effect of organic carbon shock loading on endogenous denitrification in sequential batch reactors. Bioresource Technol. 88, 215-219. Salinas, I., Cuesta, A., Esteban, M.A., Meseguer, J., 2005. Dietary administration of Lactobacillus delbrueckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immun. 19, 67-77. Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Ayub, Z., Harisanto, M., Horowitz, A., Brock, D.L., 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacult Eng. 36, 184-191. Sasikala, C., Ramana, C.V., 1995. Biotechnological potentials of anoxygenic Phototrophic bacteria. I. Production of Single Cell Protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Advances in applied microbiology. 41, 173-226. Slepecky, R.A., 1992. What is a Bacillus. P.1-22. In: Doi, R.H. and Gloughlin, M.M.(eds.). Biology of Bacillus. Butterworth Heinemann, USA. Smith, C.E., Williams, W.G., 1974. Experimental nitrite toxicity in rainbow trout and chinook salmon. T Am Fish Soc. 103, 389-390. Smith, C.E., Russo, R.C., 1975. Nitrite-induced methemoglobinemia in rainbow trout. The Progressive Fish-Culturist. 37, 150-152. Sonenshein;, A.L., Hoch;, J.A., Losick, R.M., 1993. Bacillus subtilis and other gram-positive bacteria ― from genes to cells. Amer Society for Microbiology. Sugahara, I., Kimura, T., Hayashi, K., Nakajima, I., 1988. Distribution and generiscompostive of lytic enzyme produucing bacteria in costal and oceanic bottemsediments. Nippon Suisan Gakkaishi. 54, 1011-1015. Sugahara, I., Kimura, T., Nacagawa, Y., Kojima, H., Usuda, M., Tanaka, M., 1990. Lytic enzyme produucing bacteria in marine bottem sediments. Nippon Suisan Gakkaishi. 56, 511-518. Sugita, H., Hirose, Y., Matsuo, N., Deguchi, Y., 1998. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture. 165, 269-280. Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., Ochi, K., 2002. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Ch. 46, 315-320. Ten Have, P., Willers, H., Derikx, P., 1994. Nitrification and denitrification in an activated-sludge system for supernatant from settled sow manure with molasses as an extra carbon source. Bioresource Technol. 47, 135-141. Tran, L., Nunan, L., Redman, R.M., Mohney, L.L., Pantoja, C.R., Fitzsimmons, K., Lightner, D.V., 2013. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of aquatic organisms. 105, 45-55. Varela, J.L., Ruiz-Jarabo, I., Vargas-Chacoff, L., Arijo, S., Leon-Rubio, J.M., Garcia-Millan, I., del Rio, M.P., Morinigo, M.A., Mancera, J.M., 2010. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus. Aquaculture. 309, 265-271. Vaseeharan, B., Ramasamy, P., 2003. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett Appl Microbiol. 36, 83-87. Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol R. 64, 655-+. Vrede, K., Heldal, M., Norland, S., Bratbak, G., 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl Environ Microb. 68, 2965-2971. Wang Jiangtao, Xiaonan, Y., 2009. Growth of marine bacteria and ammonium regeneration from substrates in different C : N ratios. Acta Oceanologica Sinica. 28, 59-64. White, D., Drummond, J.T., Fuqua, C., 2007. The physiology and biochemistry of prokaryotes. Oxford University Press New York. Willison, J.C., 1993. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. Fems Microbiol Lett. 104, 1-38. Xing, X.-H., Jun, B.-H., Yanagida, M., Tanji, Y., Unno, H., 2000. Effect of C/N values on microbial simultaneous removal of carbonaceous and nitrogenous substances in wastewater by single continuous-flow fluidized-bed bioreactor containing porous carrier particles. Biochemical Engineering Journal. 5, 29-37. Xu, D.F., Wang, Y.L., Sun, L.J., Liu, H.M., Li, J.R., 2013. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp. Food Control. 30, 58-61. Yang, X., Wang, S., Zhou, L., 2012. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonasstutzeri D6. Bioresource Technol. 104, 65-72. Yang, X.P., Wang, S.M., Zhang, D.W., Zhou, L.X., 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1. Bioresource Technol. 102, 854-862. Zhang Xiao-yang, Li Zhuo-jia, Zhang Jia-song, Cao Yu-cheng, Hu Xiao-juan, Wen Guo-liang, Wu Yin, Zhao-long, Y., 2013. Effect of probiotics and carbon source on shrimp culture profit in enclosure system. Guangdong Agricultural Science. 1, 131-135. Zhou, Q.L., Li, K.M., Jun, X., Bo, L., 2009. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresource Technol. 100, 3780-3786. Zhou, X., Wang, Y., 2012. Probiotics in Aquaculture-Benefits to the Health, Technological Applications and Safety. INTECH Open Access Publisher. Zhu, N., 2007. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technol. 98, 9-13. Zokaeifar, H., Babaei, N., Saad, C.R., Kamarudin, M.S., Sijam, K., Balcazar, J.L., 2014. Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immun. 36, 68-74. Zokaeifar, H., Balcazar, J.L., Saad, C.R., Kamarudin, M.S., Sijam, K., Arshad, A., Nejat, N., 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immun. 33, 683-689. Zur, O., 1981. Primary production in intensive fish ponds and a complete organic carbon balance in the ponds. Aquaculture. 23, 197-210. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52968 | - |
| dc.description.abstract | 本實驗將糖蜜作為碳源添加至養殖水中,使水體碳氮比分別為0, 5, 10, 15, 20五種比例,0為無添加碳源組別,作為控制組。探討不同碳氮比條件對養殖環境中枯草桿菌 (Bacillus subtilis)、光合菌 (Rhodobacter sphaeroides) 及副溶血弧菌 (Vibrio parahaemolyticus) 生長、水質處理及相互抑制之影響。
實驗結果顯示枯草桿菌於碳氮比20組,生長顯著高於控制組 (p < 0.05);添加碳源的處理組,皆有效提升光合菌生長,與控制組有顯著差異 (p < 0.05),其中以碳氮比15組有最高菌量;副溶血弧菌於碳氮比5組生長較快,與控制組有顯著差異 (p < 0.05)。水質處理的結果顯示枯草桿菌在各處理組皆能降低氨-氮濃度,各組間無顯著差異 (p > 0.05),亞硝酸-氮濃度於碳氮比20組顯著降低,與控制組有顯著差異 (p < 0.05);光合菌於添加碳源的組別,氨-氮與亞硝酸-氮濃度皆下降,其中以碳氮比10、15、20組,水中氨-氮與亞硝酸-氮濃度顯著低於控制組 (p < 0.05);副溶血弧菌於碳氮比15、20組,水中氨-氮與亞硝酸-氮濃度顯著低於控制組 (p < 0.05)。抑制實驗中枯草桿菌103、105 cfu/ ml添加量對於副溶血弧菌103 cfu/ ml有抑制生長效果,光合菌105 cfu/ ml添加量對於副溶血弧菌103 cfu/ ml,第72小時後有抑制生長效果。 添加碳源提高水體中碳氮比,能有效促進水中細菌對水質的改善,並且營造較適合枯草桿菌和光合菌的環境,達到抑制副溶血弧菌生長。 | zh_TW |
| dc.description.abstract | This study added molasses as carbon source into the water to control carbon/ nitrogen ratios at five levels, 0, 5, 10, 15 and 20. 0 added nothing as a control group. To investigate different carbon/ nitrogen ratios effects of Bacillus subtilis, Rhodobacter sphaeroides and Vibrio parahaemolyticus on growth, water quality and mutual inhibition.
In the experiment of the bacteria growth in different carbon/ nitrogen ratios water, the results show that Bacillus subtilis at 20 group were significantly higher than the control (p < 0.05). Each treatment group increased growth of Rhodobacter sphaeroides significantly compared to the control group (p < 0.05), while 15 treatment group had better effect than all treatment group. In addition, Vibrio parahaemolyticus at 5 treatment group were significantly increased rate of growth to control (p < 0.05). In the experiment of the water quality of bacteria in different carbon/ nitrogen ratios water, the results indicated that Bacillus subtilis reduced ammonia-N concentrations in water, but it was not effects significantly on each treatment group. In addition, the nitrite-N concentrations significantly lower at 20 treatment group than control (p < 0.05). Each treatment group of Rhodobacter sphaeroides, which reduced ammonia-N and nitrite-N concentration significantly compared to the control group (p < 0.05), while 10、15 and 20 treatment had better results. Vibrio parahaemolyticus at 15、20 treatment reduce the ammonia-N and nitrite-N concentrations significantly than control group (p < 0.05). Through the inhibition of bacteria growth, 103、105 cfu/ ml of Bacillus subtilis can produce inhibition effects on 103 cfu/ ml Vibrio parahaemolyticus. The 105 cfu/ ml of Rhodobacter sphaeroides had inhibition effects on 103 cfu/ ml Vibrio parahaemolyticus after 72 hr. In conclusion of this study, carbon source addition increase carbon/ nitrogen ratios in water can effectively improve the water quality and growth activities of Bacillus subtilis and Rhodobacter sphaeroides. To build a suitable environment of probiotic for more efficiently inhibit the growth of Vibrio parahaemolyticus. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:36:40Z (GMT). No. of bitstreams: 1 ntu-104-R02b45008-1.pdf: 1929301 bytes, checksum: 54335593b85f3822367d13668a796819 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 II
Abstract III 目錄 V 圖目錄 VIII 前言 1 文獻整理 3 一、碳氮比 3 二、微生物營養 3 2.1碳源: 3 2.2氮源: 4 三、碳氮比調控的應用 4 四、益生菌在水產養殖的應用 6 五、實驗使用之益生菌 8 5.1枯草桿菌 8 5.2光合菌 10 六、養殖環境中有害物質成因與影響 10 七、蝦類早期死亡綜合症 (Shrimp Early Mortality Syndrome;EMS) 11 7.1病原 12 7.2致病機制 12 八、糖蜜 13 材料與方法 14 一、菌株之培養 14 1.1菌株來源 14 1.2培養基的選擇 14 1.3菌種保存 14 1.4菌落計數 (塗佈法) 15 1.5生長曲線測定 15 1.6工作菌液製作 15 二、實驗試水來源 16 2.1 養殖汙水 16 2.2 水中碳氮比檢測 16 2.3 實驗試水配製 16 三、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中生長之影響 17 3.1實驗操作 17 四、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中水質檢測 17 4.1測量水質的試水來源 17 4.2 氨-氮濃度的測試 17 4.3亞硝酸-氮濃度的測試 18 五、枯草桿菌及光合菌在不同碳氮比水中對副溶血弧菌抑制檢測 19 5.1 總生菌數測定 19 5.2 弧菌數測定 19 5.3 實驗操作 19 六、統計分析 20 結果 21 一、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中生長之影響 21 1.1不同碳氮比對枯草桿菌生長之影響 21 1.2不同碳氮比對光合菌生長之影響 21 1.3不同碳氮比對副溶血弧菌生長之影響 21 二、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中水質檢測 22 2.1枯草桿菌在不同碳氮比水中氨-氮濃度影響 22 2.2枯草桿菌在不同碳氮比水中亞硝酸-氮濃度影響 22 2.3光合菌在不同碳氮比水中氨-氮濃度影響 22 2.4光合菌在不同碳氮比水中亞硝酸-氮濃度影響 23 2.5副溶血弧菌在不同碳氮比水中氨-氮濃度影響 23 2.6副溶血弧菌在不同碳氮比水中亞硝酸-氮濃度影響 23 三、枯草桿菌及光合菌在不同碳氮比水中對副溶血弧菌抑制檢測 24 3.1枯草桿菌103 cfu/ ml與副溶血弧菌103 cfu/ ml 24 3.2枯草桿菌105 cfu/ ml與副溶血弧菌103 cfu/ ml 24 3.3光合菌105 cfu/ ml與副溶血弧菌103 cfu/ ml 24 討論 26 一、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中生長之影響 26 二、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中水質檢測 27 三、枯草桿菌及光合菌在不同碳氮比水中對副溶血弧菌抑制檢測 28 結論 31 一、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中生長之影響 31 二、枯草桿菌、光合菌和副溶血弧菌在不同碳氮比水中水質檢測 31 三、枯草桿菌及光合菌在不同碳氮比水中對副溶血弧菌抑制檢測 31 參考文獻 32 圖表附件 49 附錄 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 枯草桿菌 | zh_TW |
| dc.subject | 碳氮比 | zh_TW |
| dc.subject | 光合菌 | zh_TW |
| dc.subject | 水質 | zh_TW |
| dc.subject | 抑制 | zh_TW |
| dc.subject | 副溶血弧菌 | zh_TW |
| dc.subject | 生長 | zh_TW |
| dc.subject | Inhibition | en |
| dc.subject | Bacillus subtilis | en |
| dc.subject | Rhodobacter sphaeroides | en |
| dc.subject | Vibrio parahaemolyticus | en |
| dc.subject | Growth | en |
| dc.subject | Water quality | en |
| dc.subject | Carbon/ Nitrogen Ratios | en |
| dc.title | 水體碳氮比對益生菌及副溶血弧菌生長、水質與相互抑制之影響 | zh_TW |
| dc.title | Effects of C/N ratios on Growth, Water Quality and Mutual Inhibition of Probiotic and Vibrio parahaemolyticus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖文亮,劉秉忠,冉繁華 | |
| dc.subject.keyword | 碳氮比,枯草桿菌,光合菌,副溶血弧菌,生長,水質,抑制, | zh_TW |
| dc.subject.keyword | Carbon/ Nitrogen Ratios,Bacillus subtilis,Rhodobacter sphaeroides,Vibrio parahaemolyticus,Growth,Water quality,Inhibition, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
