請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52958
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑞麟(Ruey-Lin Chern) | |
dc.contributor.author | Yu-Jie Liao | en |
dc.contributor.author | 廖昱杰 | zh_TW |
dc.date.accessioned | 2021-06-15T16:36:06Z | - |
dc.date.available | 2015-08-16 | |
dc.date.copyright | 2015-08-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-12 | |
dc.identifier.citation | 1. Ruan, Z. and M. Qiu, Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys. Rev. Lett., 2006. 96(23): p. 233901.
2. Sharma, V., et al., Structural origin of circularly polarized iridescence in jeweled beetles. sci, 2009. 325(5939): p. 449-451. 3. Guillaumée, M., et al., Observation of enhanced transmission for s-polarized light through a subwavelength slit. Opt. Express, 2010. 18(9): p. 9722-9727. 4. Yu, L.-B., et al., Physical origin of directional beaming emitted from a subwavelength slit. Phys. Rev. B, 2005. 71(4): p. 041405. 5. Cullen, D., R. Brown, and C. Lowe, Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosens, 1988. 3(4): p. 211-225. 6. Dai, L. and C. Jiang, Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating. Opt. Express, 2009. 17(22): p. 20502-20514. 7. Yirmiyahu, Y., et al., Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures. Opt. Express, 2007. 15(20): p. 13404-13414. 8. Gansel, J.K., et al., Gold helix photonic metamaterial as broadband circular polarizer. sci, 2009. 325(5947): p. 1513-1515. 9. Marques, R., et al., Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys. Rev. Lett., 2002. 89(18): p. 183901. 10. Huangfu, J., et al., Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns. Appl. Phys. Lett., 2004. 84(9): p. 1537-1539. 11. Miyazaki, H.T. and Y. Kurokawa, Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett., 2006. 96(9): p. 097401. 12. Olk, P., et al., Subwavelength emitters in the near-infrared based on mercury telluride nanocrystals. Appl. Phys. Lett., 2004. 84(23): p. 4732-4734. 13. Prather, D.W., Design and application of subwavelength diffractive lenses for integration with infrared photodetectors. OPT ENG, 1999. 38(5): p. 870-878. 14. Hibbins, A.P., J.R. Sambles, and C.R. Lawrence, Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate. Appl. Phys. Lett., 2002. 81(24): p. 4661-4663. 15. Ding, Y. and R. Magnusson, Resonant leaky-mode spectral-band engineering and device applications. Opt. Express, 2004. 12(23): p. 5661-5674. 16. Jung, Y., G. Brambilla, and D.J. Richardson, Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. Opt. Express, 2008. 16(19): p. 14661-14667. 17. Pendry, J.B. and D.R. Smith, Reversing light with negative refraction. Phys Today., 2004. 57: p. 37-43. 18. Padilla, W.J., D.N. Basov, and D.R. Smith, Negative refractive index metamaterials. Mater. Today, 2006. 9(7): p. 28-35. 19. Veselago, V.G., THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF IMG align= ABSMIDDLE alt= ϵ eps/IMG AND μ. Physics-Uspekhi, 1968. 10(4): p. 509-514. 20. Pendry, J., et al., Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996. 76(25): p. 4773. 21. Pendry, J.B., et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans., 1999. 47(11): p. 2075-2084. 22. Xu, X.-l., et al., Bianisotropic response of microfabricated metamaterials in the terahertz region. JOSA B, 2006. 23(6): p. 1174-1180. 23. Andryieuski, A., R. Malureanu, and A.V. Lavrinenko. Homogenization of metamaterials: Parameters retrieval methods and intrinsic problems. in Transparent Optical Networks (ICTON), 2010 12th International Conference on. 2010. IEEE. 24. Chen, H., et al., Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Opt. Express, 2006. 14(26): p. 12944-12949. 25. Chen, L., et al., Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures. PIER,M, 2013. 29: p. 79-93. 26. Chen, X., et al., Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E, 2005. 71(4): p. 046610. 27. Li, Z., K. Aydin, and E. Ozbay, Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Phys. Rev. E, 2009. 79(2): p. 026610. 28. Li, Z., K. Aydin, and E. Ozbay, Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions. PHOTONIC NANOSTRUCT, 2012. 10(3): p. 329-336. 29. Chen, X., et al., Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 2004. 70(1): p. 016608. 30. Guven, K., et al., Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters. J OPT A-PURE APPL OP, 2007. 9(9): p. S361. 31. Kwon, D.-H., et al., Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design. Opt. Express, 2008. 16(16): p. 11822-11829. 32. Tassin, P., T. Koschny, and C.M. Soukoulis, Effective material parameter retrieval for thin sheets: Theory and application to graphene, thin silver films, and single-layer metamaterials. Physica B Condens Matter, 2012. 407(20): p. 4062-4065. 33. Barroso, J. and U. Hasar, Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping method. J INFRARED MILLIM TE, 2012. 33(2): p. 237-244. 34. Liu, X.-X., D.A. Powell, and A. Alù, Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures. Phys. Rev. B, 2011. 84(23): p. 235106. 35. Lerat, J.-M., N. Malléjac, and O. Acher, Determination of the effective parameters of a metamaterial by field summation method. J. Appl. Phys., 2006. 100(8): p. 084908. 36. Sun, S., S. Chui, and L. Zhou, Effective-medium properties of metamaterials: a quasimode theory. Phys. Rev. E, 2009. 79(6): p. 066604. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52958 | - |
dc.description.abstract | 人工超常材料為次波長週期結構,擁有自然界所沒有的物理特性,例如負的折射率以及負的磁導係數,而次波長結構是指單位元小於入射波波長之結構且其可以用等效介質理論來分析,將整個複雜的結構視同一塊簡單的等向性或非等向性塊材用一等效參數表示。
本論文以組成率為基礎透過馬克斯威方程式推導超常材料之色散關係、共振模態、阻抗,考慮波傳問題並且解析出反射以及穿透係數,再由阻抗、折射率、反射以及穿透係數反算電磁參數。 其中針對一雙非等向性材料,假對掌性超常材料,推導其解析解,但是由於特殊的結構關係,材料之組成率比一般等向性或異向性材料複雜,並且未知數較多。 因此我們藉由三種方向入射解析出假對掌性超常材料各方向之色散關係、阻抗、折射率,並且由數值模擬的方式得到反射以及穿透係數,接著再透過三種方向之反射及穿透係數反算其組成率之電磁參數,而三種方向入射分別會產生兩種模態,TE Mode(電場垂直入射面)和TM Mode(磁場垂直入射面),利用兩種不同的模態可以推導出不同的電磁參數反算公式,並由兩種模態所推導反算公式並互相驗證,最後做參數分析,改變假對掌性材料結構的參數,寬度,厚度,以及最大半徑,並分析改變結構參數之影響,找出最佳設計參數。 | zh_TW |
dc.description.abstract | Artificial meta-materials is subwavelength periodic structures which exhibit unusual electromagnetic response such as negative refractive index and negative permeability. Subwavelength structure, a structure unit which is smaller than wavelength and it can be analyzed by the effective medium theory which the structure can be regarded as an isotropic or anisotropic effective medium and be described by retrieval of the effective parameters of meta-materials.
In this thesis we derive dispersion relation, eigenwaves and impedance based on different sets of constitutive relations through Maxwell equation. Also we derive reflection and transmission coefficients through multiple planer interfaces. Then we use impedance, index of refraction, reflection and transmission coefficients to retrieve the effective parameter of meta-materials. In particular, we study plane wave propagation in a special kind of bi-anisotropic medium: pseudo chiral medium. Because of its special structure, constitutive relations of pseudo chiral medium is more complex than isotropy or anisotropy medium and is more difficult to retrieve due to a lot of unknown effective parameter. So the scattering parameters in three propagation direction are used and we derive dispersion relation, impedance and index of refraction. Then we use impedance, index of refraction, reflection and transmission coefficients from numerical simulation to retrieve the effective parameter of pseudo chiral meta-material. There are two eigenmode in each direction, TE mode and TM mode. Analytical inversion equations are derived in order to retrieve the effective parameter are different in two modes in which we can use two to verify the retrieval of effective parameter. Finally, we change the size of pseudo chiral meta-material like width, thickness, and the radius to analyze the effect of chiral meta-material and find the best parameter to design the material. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:36:06Z (GMT). No. of bitstreams: 1 ntu-104-R02543056-1.pdf: 1372177 bytes, checksum: a49065212d6237d1d491232a43145a87 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 總目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論及文獻回顧 1 1.1 次波長週期結構 1 1.2 超常材料 2 1.3 超常材料之反算 3 1.4 本文大綱 4 第二章 理論與方法 5 2.1 基本電磁學理論 5 2.1.1 馬克斯威方程式 6 2.1.2 週期邊界條件 7 2.2 材料組成率 7 2.3 非等向性材料 8 2.3.1 色散關係 8 2.3.2 特徵模態 9 2.3.3 阻抗 10 2.3.4 坡印廷向量(Poynting vector) 11 2.3.5 非均勻介質中的反射以及穿透 11 2.3.6 層狀介質(Layered media)的反射以及穿透 13 2.4 平板介電質之電磁參數反算 15 2.4.1 等向性介電質之色散關係 16 2.4.2 等向性介電質之特徵模態 16 2.4.3 等向性介電質之阻抗 17 2.4.4 等向性介電質之折射率 17 2.4.5 等向性介電質之反射以及穿透係數 18 2.4.6 等向性介電質的反算以及修正 20 第三章 假對掌性超常材料 23 3.1 假對掌性超常材料之組成 23 3.2 z方向入射之假對掌性材料色散關係、阻抗、折射率 25 3.2.1 假對掌性材料之色散關係(z方向入射) 25 3.2.2 假對掌性材料之特徵模態(z方向入射) 25 3.2.3 假對掌性材料之阻抗(z方向入射) 26 3.2.4 假對掌性材料之折射率(z方向入射) 27 3.3 y方向入射之假對掌性材料色散關係、阻抗、折射率 28 3.3.1 假對掌性材料之色散關係(y方向入射) 28 3.3.2 假對掌性材料之特徵模態(y方向入射) 28 3.3.3 假對掌性材料之阻抗(y方向入射) 29 3.3.4 假對掌性材料之折射率(y方向入射) 30 3.4 x方向入射之假對掌性材料色散關係、阻抗、折射率 31 3.4.1 假對掌性材料之特徵模態(x方向入射) 32 3.4.2 假對掌性材料之阻抗(x方向入射) 33 3.4.3 假對掌性材料之折射率(x方向入射) 34 3.5 假對掌性材料三方向入射之色散關係、阻抗、折射率 35 3.6 假對掌性材料之反算及修正 36 3.7 數值模擬設定 39 3.7.1 假對掌性材料之建模 39 3.7.2 數值模擬之反射以及穿透係數(R&T) 39 第四章 結果與討論 41 4.1 假對掌性材料之反射及穿透係數(R&T)反算電磁參數 41 4.1.1 三種方向入射之反射及穿透係數(TE Mode) 42 4.1.2 三種方向入射之反射及穿透係數(TM Mode) 46 4.1.3 兩種方法之反算並驗證(TM&TE Mode) 50 4.2 假對掌性材料電磁參數反算之改變厚度影響 54 4.3 假對掌性材料電磁參數反算之改變寬度影響 57 4.4 假對掌性材料電磁參數反算之改變最大外徑影響 60 第五章 結論與未來工作 63 5.1 結論 63 5.2 未來工作 64 參考文獻 65 | |
dc.language.iso | zh-TW | |
dc.title | 假對掌性超常材料之電磁參數反算 | zh_TW |
dc.title | Retrieval of Effective Parameters for Pseudo Chiral Metamaterials | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張瑞麟(Railing Chang),郭志禹(Chih-Yu Kuo) | |
dc.subject.keyword | 次波長結構,超常材料,等效介質理論,電磁參數反算,假對掌性超常材料, | zh_TW |
dc.subject.keyword | Subwavelength structure,Meta-material,Effective Medium Theorem,Retrieval of effective parameter,Pseudo-chiral medium., | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。