Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶(Kuo-Ching Chen)
dc.contributor.authorJe-Feng Leeen
dc.contributor.author李哲鋒zh_TW
dc.date.accessioned2021-06-15T16:35:42Z-
dc.date.available2018-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-12
dc.identifier.citation[1] https://www.asus.com/tw/
Notebooks_Ultrabooks/TAICHI_31/
[2] http://www.teslasociety.com/nyautoshow.htm
[3] http://en.wikipedia.org/wiki/Spacecraft
[4] Kuan-Cheng Chiu, Chi-Hao Lin, Sheng-Fa Yeh, Yu-Han Lin, Chih-Sheng Huang, Kuo-Ching Chen, Cycle life analysis of series connected lithium-ion batteries with temperature difference, Journal of Power Sources, 263, 75, (2014)
[5] Aniruddha Jana, David R. Ely, R. Edwin García, Dendrite-separator
interactions in lithium-based batteries, Journal of Power Sources, 275, 912,
(2015)
[6] P.G. Balakrishnan, R. Ramesh, T. Premkumar, Safety mechanisms in lithium ion batteries, Journal of Power Sources, 155, 401, (2006)
[7] Pankaj Arora, Marc Doyle, and Ralph E. White, Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes, J. Electrochem. Soc., 146, 3543, (1999)
[8] John Christensen, John Newman, Stress generation and fracture in lithium insertion materials, J Solid State Electrochem, 10, 293, (2006)
[9] Ralph J. Brodd, Batteries for Sustainability, Springer, (2013)
[10] Pankaj Arora and Ralph E. White, Marc Doyle, Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries, J. Electrochem. Soc., 145, 10, (1998)
[11] Yue Qi,, Haibo Guo, Louis G. Hector, Jr., and Adam Timmons, Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation, Journal of The Electrochemical Society, 157, A558, (2010)
[12] Ping Zhou and John E. Fischer, Interlayer interactions in LiC6: Compressibility and thermal expansion, Phys. Rev. B, 53, 12643, (1996)
[13] http://www.enedu.org.tw/files/DownloadFile/20121222121312.pdf
[14] L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal Reversible Volume Changes in Lithium Alloys, Electrochemical and Solid-State Letters, 4, A137, (2001)
[15] Ki-Lyoung Lee, Ju-Young Jung, Seung-Won Lee, Hee-Soo Moon, Jong-Wan Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries, Journal of Power Sources, 129, 270, (2004)
[16] John Cannarella, Xinyi Liu, Collen Z. Leng, Patrick D. Sinko, Gennady Y. Gor, and Craig B. Arnold, Mechanical Properties of a Battery Separator under Compression and Tension, Journal of The Electrochemical Society, 161, F3117, (2014)
[17] Xianke Lin, Jonghyun Park, Lin Liu,Yoonkoo Lee, A. M. Sastry, and Wei
Lu, A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries, Journal of The Electrochemical Society, 160, A1701, (2013)
[18] Yiling Dai, Long Cai, Ralph E. White, Simulation and analysis of stress in a Li-ion battery with a blended LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathode, Journal of Power Sources, 247, 365, (2014)
[19] Ramadass Premanand, Anand Durairajan, Bala Haran, Ralph White, and Branko
Popov, Studies on Capacity Fade of Spinel-Based Li-Ion Batteries, Journal of The
Electrochemical Society, 149, A54, (2002)
[20] Gang Ning, Ralph E. White, Branko N. Popov, A generalized cycle life model of
rechargeable Li-ion batteries, Electrochimica Acta, 51, 2012, (2006)
[21] M. B. Pinson and M. Z. Bazant, Theory of SEI Formation in Rechargeable
Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction,
J.Electrochem. Soc., 160, A243, (2013)
[22] Matthew T. Lawder, Paul W. C. Northrop, and Venkat R. Subramanian,
Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV
Batteries and Drive Cycles, Journal of The Electrochemical Society, 161, A2099,
(2014)
[23] M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, Multimodal Physics-Based
Aging Model for Life Prediction of Li-Ion Batteries, Journal of The
Electrochemical Society, 156, A145, (2009)
[24] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H.
Tataria, J. Musser, and P. Finamore, Cycle-Life Model for Graphite-LiFePO4
Cells, J. Power Sources, 196, 3942, (2011)
[25] Y. Ye, Y. Shi, and A.A.O. Tay, Electro-Thermal Cycle Life Model for Lithium
Iron Phosphate Battery, J. Power Sources, 217, 509, (2012)
[26] Fredrik Larssona,and Bengt-Erik Mellander, Abuse by External Heating,
Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells,
Journal of The Electrochemical Society, 161, A1611, (2014)
[27] R. Spotnitz, J. Franklin, Abuse behavior of high-power, lithium-ion cells, Journal
of Power Sources, 113, 81, (2003)
[28] Tommy Georgios Zavalis, Marten Behm, and Goran Lindbergh, Investigation of
Short-Circuit Scenarios in a Lithium-Ion Battery Cell, Journal of The
Electrochemical Society, 159, A848, (2012)
[29] Albert H. Zimmerman and Michael V. Quinzio, Lithium Plating in Lithium-Ion
Cells, NASA Battery Workshop, (2010)
[30] Kuan-Cheng Chiu, Chi-Hao Lin, Sheng-Fa Yeh, Yu-Han Lin, Kuo-Ching Chen,
An electrochemical modeling of lithium-ion battery nail penetration, Journal of
Power Source, 251, 254, (2014)
[31] Godfrey Sikha, Branko N. Popov, and Ralph E. White, Effect of Porosity on the
Capacity Fade of a Lithium-Ion Battery Theory, Journal of The Electrochemical
Society, 151, A1104, (2004)
[32] Yue Qi, and Stephen J. Harris, In Situ Observation of Strains during Lithiation of a
Graphite Electrode, Journal of The Electrochemical Society, 157, A741, (2010)
[33] S. Prussin, Generation and Distribution of Dislocations by Solute Diffusion, Journal of Applied Physics, 31, 1876, (1961)
[34] Xiangchun Zhang, Wei Shyy, and Ann Marie Sastry, Numerical Simulation of
Intercalation-Induced Stress in Li-Ion Battery Electrode Particles, Journal of
The Electrochemical Society, 154, A910, (2007)
[35] Yang-Tse Cheng,, MarkW. Verbrugge, Evolution of stress within a spherical
insertion electrode particle under potentiostatic and galvanostatic operation,
Journal of Power Sources, 190, 453, (2009)
[36] Rutooj Deshpande, Yang-Tse Cheng, Mark W. Verbrugge, and Adam Timmons,
Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical
Electrode Particle, Journal of The Electrochemical Society, 158, A718, (2011)
[37] Xing-yu Zhang, Feng Hao, Hao-sen Chen, and Dai-ning Fang, Diffusion-Induced
Stresses in Transversely Isotropic Cylindrical Electrodes of Lithium-Ion Batteries,
Journal of The Electrochemical Society, 161, A2243, (2014)
[38] William H. Woodford, Yet-Ming Chiang, and W. Craig Carter, “Electrochemical
Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis,
J. Electrochem. Soc., 157, A1052, (2010)
[39] Xinran Xiao, Wei Wu, Xiaosong Huang, A multi-scale approach for the stress
analysis of polymeric separators in a lithium-ion battery,
Journal of Power Source, 195, 7649, (2010)
[40] Wei Wu, Xinran Xiao, MiaoWang, and Xiaosong Huang, A Microstructural
Resolved Model for the Stress Analysis of Lithium-Ion Batteries,
Journal of The Electrochemical Society, 161, A803, (2014)
[41] Yuanyuan Xie, Chris Yuan, An integrated anode stress model for commercial
LixC6-LiyMn2O4 battery during the cycling operation, Journal of Power Sources,
274, 101, (2015)
[42] E. Martinez-Rosas, R. Vasquez-Medrano, and A. Flores-Tlacuahuac, Modeling and
Simulation of Lithium-Ion Batteries, Computers and Chemical Engineering, 35,
1937, (2011)
[43] Marc Doyle, Thomas F. Fuller, and John Newman, Modeling of Galvanostatic
Charge and Discharge of the Lithium/Polymer/Insertion Cell, Journal of
The Electrochemical Society, 140, 1526, (1993)
[44] M. Safari and C. Delacourt, Modeling of a Commercial Graphite/LiFePO4 Cell,
J. Electrochem. Soc., 158, A562, (2011)
[45] Todd M. Bandhauer, Srinivas Garimella, and Thomas F. Fuller, A Critical Review
of Thermal Issues in Lithium-Ion Batteries, Journal of The Electrochemical
Society, 158, R1, (2011)
[46] Christophe Forgez, Dinh Vinh Do, Guy Friedrich, Mathieu Morcrette , Charles
Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion
battery, Journal of Power Sources, 195, 2961, (2010)
[47] James Marcicki and Xiao Guang Yang, Model-Based Estimation of Reversible
Heat Generation in Lithium-Ion Cells, Journal of The Electrochemical Society,
161, A1794, (2014)
[48] R. E. Gerver and J. P. Meyers, Three-Dimensional Modeling of Electrochemical
Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar
Configurations, J. Electrochem. Soc., 158, A835, (2011)
[49] L. O. Val?en and J. N. Reimers, Transport Properties of LiPF6-Based Li-Ion
Battery Electrolytes, J. Electrochem. Soc., 152, A882, (2005)
[50] E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot and F. Huet, Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications, Journal of The Electrochemical Society, 159, A1508, (2012)
[51] G. Sikha, P. Ramadass, B.S. Haran, R.E. White, Branko N. Popov, Comparison of the capacity fade of Sony US 18650 cells charged with different protocols, Journal of Power Sources, 122, 67, (2003)
[52] 邱冠澄,利用電化學法探討鋰離子電池組穿刺安全設計與串聯溫度管理,
國立臺灣大學工學院應用力學研究所碩士論文,(2013)
[53] 黃智聲,利用電化學法分析鋰電池交流阻抗頻譜和鋰電池並聯行為與電池安
全性設計,國立臺灣大學工學院應用力學研究所碩士論文,(2014)
[54] R. Gogoana, M. B. Pinson, M. Z. Bazant, and S. E. Sarma, Mismatch in parallel connection, J. Power Source., 252, 8, (2014)
[55] COMSOL, 4.4, 2013
[56] Wei Wu, Xinran Xiao, Xiaosong Huang, Shutian Yan, A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell, Computational Materials Science, 83, 127, (2014)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52951-
dc.description.abstract近年來行動裝置與電動車發展,使得鋰離子電池在未來扮演著更重要的角色,然而與其相關的議題就更被重視。在本論文當中,探討了四個主題,第一個是電池的充放電行為與升溫情形之預測與驗證,第二個是電池的循環壽命預測,第三個是隔熱膠等級的選擇,第四個是電極微結構之應力分析。
對於循環壽命而言,我們成功建立一套模型,並且可以模擬出電池在常溫及許多種充放電條件下的循環壽命預測,並與實驗數據所建立的模型比較之。再將電池循環充放電行為推廣到變溫下的情形,並基於常溫下的驗證,我們可以預測變溫下電池的循環壽命。
在隔熱膠等級預測上,我們先模擬出三十六安時電池之放電曲線與溫度增長情形,並與工研院所量測之實驗點比較,之後預測其充電曲線,並延伸到兩串兩並及四串兩並電池組之充放電行為與溫升模擬。最後,探討不同熱傳導係數下的隔熱膠對於電池之溫度差異影響。
我們可以得出鋰原子嵌入、出電極下,對於電極所產生之應力,並與理論解析解比較。接著探討不同充電模式對於不同狀態之電池並聯之應力所產生的影響。
zh_TW
dc.description.abstractAs rapid development of mobile devices and electric vehicle, the issue of energy storage becomes important. Lithium-ion batteries have been extensively used as important energy storage devices. On this thesis, we focus on issues related to lithium-ion battery. These are four subjects, namely, continuous charge-discharge cycle and thermal behavior, cycle life prediction, the determination of thermal interface material, and stress analysis on the electrode.
The cycle life of batteries are studied. We develop a capacity fade model which is able to predict the battery cycle life at different cycling conditions. We verify the model results with the capacity loss calculated by empirical formula based on experimental data. By using two-way coupling, we extend the results to variable temperature. Our verification indicates that the capacity fade model can predict the battery cycle life with varying temperature.
The thermal effect is then investigated by using interface materials with different thermal conductivity. We simulated the discharge curve of ITRI-made cells and compare it with experimental results. We also predict the charge-discharge behavior of the battery pack under varying temperature condition.
The stress induced by lithium intercalation processes has destructive effects on the electrode particle, thus minimizing the stress is the solution to prolong the battery cycle life. We develop a porous electrode theory for stress analysis. As a result, we could address the effects of different charge protocols on electrode stresses. The analysis is performed using parallel-connected cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:35:42Z (GMT). No. of bitstreams: 1
ntu-104-R02543052-1.pdf: 14963537 bytes, checksum: ab0ebc27212514caf0b7351fd4809cdf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝.............................i
摘要.............................ii
Abstract........................iii
目錄.............................v
圖目錄...........................vii
表格目錄.........................xiv
參數表...........................xv
第1章 緒論........................1
1.1 引言........................ 1
1.2 研究動機......................2
1.3 研究方法......................3
1.4 論文架構......................4
第2章 文獻回顧.....................5
2.1 電池組件功用...................5
2.2 電池循環壽命...................7
2.3 電池安全性議題................11
2.4 電極應力分析..................13
第3章 理論基礎....................16
3.1 多孔電極理論..................16
3.2 結果與討論....................25
第4章 電池連續充放電行為與熱模擬... 29
4.1 電池充電行為..................29
4.2 電池連續充放電行為.............33
4.3 雙向耦合......................43
第5章 電池循環壽命預測..............54
5.1 電池容量散失行為...............54
5.2 結果與討論....................60
第6章 串並聯電池組.................79
6.1 單顆工研院自製電池.............79
6.2 導熱膠熱傳導係數對溫度之影響....94
第7章 電極應力分析.................104
7.1 電極應力分析介紹...............104
7.2 結果與討論.....................110
第8章 結論與未來工作................136
8.1 結論 ..........................136
8.2 未來工作.......................136
參考文獻...........................138
dc.language.isozh-TW
dc.subject鋰離子電池zh_TW
dc.subject電池組zh_TW
dc.subject應力zh_TW
dc.subject循環壽命zh_TW
dc.subject溫度zh_TW
dc.subjectcycle lifeen
dc.subjectbattery packen
dc.subjectstressen
dc.subjecttemperatureen
dc.subjectlithium-ion batteryen
dc.title利用電化學法探討鋰離子電池連續充放電、溫度管理與應力分析zh_TW
dc.titleOn Continuous Charge-Discharge, Thermal Management and Stress Analysis for Li-Ion Batteries
with an Electrochemical Approach
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭志禹(Chih-Yu Kuo),林祺皓(Chi-Hao Lin),林揚善(Yang-Shan Lin)
dc.subject.keyword鋰離子電池,電池組,應力,循環壽命,溫度,zh_TW
dc.subject.keywordlithium-ion battery,battery pack,stress,cycle life,temperature,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2015-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
14.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved