請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52948
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴明宗(Ming-Zong Lai) | |
dc.contributor.author | Yu-Jung Wu | en |
dc.contributor.author | 吳禹蓉 | zh_TW |
dc.date.accessioned | 2021-06-15T16:35:32Z | - |
dc.date.available | 2015-09-24 | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-12 | |
dc.identifier.citation | Anjuere, F., Martin, P., Ferrero, I., Fraga, M.L., del Hoyo, G.M., Wright, N., and Ardavin, C. (1999). Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590-598.
Arthur, J.S.C., and Ley, S.C. (2013). Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13, 679-692. Basu, S., Hodgson, G., Katz, M., and Dunn, A.R. (2002). Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood 100, 854-861. Budd, R.C., Yeh, W.C., and Tschopp, J. (2006). cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6, 196-204. Buskiewicz, I.A., Koenig, A., Roberts, B., Russell, J., Shi, C., Lee, S.H., Jung, J.U., Huber, S.A., and Budd, R.C. (2014). c-FLIP-Short reduces type I interferon production and increases viremia with coxsackievirus B3. PLoS One 9, e96156. Chau, H., Wong, V., Chen, N.J., Huang, H.L., Lin, W.J., Mirtsos, C., Elford, A.R., Bonnard, M., Wakeham, A., You-Ten, A.I., et al. (2005). Cellular FLICE-inhibitory protein is required for T cell survival and cycling. J Exp Med 202, 405-413. Chen, H., Sohn, J., Zhang, L., Tian, J., Chen, S., and Bjeldanes, L.F. (2014). Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IkappaBalpha/MAPK/ERK signaling pathways. Eur J Pharmacol 724, 168-174. Chen, L., and Flies, D.B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242. Chen, M., Wang, Y.H., Wang, Y., Huang, L., Sandoval, H., Liu, Y.J., and Wang, J. (2006). Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311, 1160-1164. Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808. Dudziak, D., Kamphorst, A.O., Heidkamp, G.F., Buchholz, V.R., Trumpfheller, C., Yamazaki, S., Cheong, C., Liu, K., Lee, H.W., Park, C.G., et al. (2007). Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107-111. Fang, L.W., Tai, T.S., Yu, W.N., Liao, F., and Lai, M.Z. (2004). Phosphatidylinositide 3-kinase priming couples c-FLIP to T cell activation. J Biol Chem 279, 13-18. Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D.P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G., and Leverkus, M. (2011). cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43, 449-463. Fric, J., Zelante, T., Wong, A.Y., Mertes, A., Yu, H.B., and Ricciardi-Castagnoli, P. (2012). NFAT control of innate immunity. Blood 120, 1380-1389. Fricker, N., Beaudouin, J., Richter, P., Eils, R., Krammer, P.H., and Lavrik, I.N. (2010). Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190, 377-389. Golks, A., Brenner, D., Krammer, P.H., and Lavrik, I.N. (2006). The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203, 1295-1305. Gordy, C., Pua, H., Sempowski, G.D., and He, Y.W. (2011). Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117, 618-629. Grambihler, A., Higuchi, H., Bronk, S.F., and Gores, G.J. (2003). cFLIP-L inhibits p38 MAPK activation: an additional anti-apoptotic mechanism in bile acid-mediated apoptosis. J Biol Chem 278, 26831-26837. Gringhuis, S.I., Kaptein, T.M., Wevers, B.A., Theelen, B., van der Vlist, M., Boekhout, T., and Geijtenbeek, T.B. (2012). Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13, 246-254. Hajishengallis, G., and Lambris, J.D. (2011). Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol 11, 187-200. Hammer, G.E., and Ma, A. (2013). Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol 31, 743-791. He, M.X., and He, Y.W. (2013). A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ 20, 188-197. He, M.X., and He, Y.W. (2015). c-FLIP protects T lymphocytes from apoptosis in the intrinsic pathway. J Immunol 194, 3444-3451. Hedrick, S.M., Ch'en, I.L., and Alves, B.N. (2010). Intertwined pathways of programmed cell death in immunity. Immunol Rev 236, 41-53. Hoffmeyer, A., Grosse-Wilde, A., Flory, E., Neufeld, B., Kunz, M., Rapp, U.R., and Ludwig, S. (1999). Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J Biol Chem 274, 4319-4327. Hsu, S.C., Gavrilin, M.A., Tsai, M.H., Han, J., and Lai, M.Z. (1999). p38 mitogen-activated protein kinase is involved in Fas ligand expression. J Biol Chem 274, 25769-25776. Huang, Q.Q., Perlman, H., Birkett, R., Doyle, R., Fang, D., Haines, G.K., Robinson, W., Datta, S., Huang, Z., Li, Q.Z., et al. (2015). CD11c-mediated deletion of Flip promotes autoreactivity and inflammatory arthritis. Nat Commun 6, 7086. Huang, Q.Q., Perlman, H., Huang, Z., Birkett, R., Kan, L., Agrawal, H., Misharin, A., Gurbuxani, S., Crispino, J.D., and Pope, R.M. (2010). FLIP: a novel regulator of macrophage differentiation and granulocyte homeostasis. Blood 116, 4968-4977. Kang, T.B., Ben-Moshe, T., Varfolomeev, E.E., Pewzner-Jung, Y., Yogev, N., Jurewicz, A., Waisman, A., Brenner, O., Haffner, R., Gustafsson, E., et al. (2004). Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173, 2976-2984. Kataoka, T., Budd, R.C., Holler, N., Thome, M., Martinon, F., Irmler, M., Burns, K., Hahne, M., Kennedy, N., Kovacsovics, M., et al. (2000). The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 10, 640-648. Kennedy, N.J., Kataoka, T., Tschopp, J., and Budd, R.C. (1999). Caspase activation is required for T cell proliferation. J Exp Med 190, 1891-1896. Kim, K., Duramad, O., Qin, X.F., and Su, B. (2007). MEKK3 is essential for lipopolysaccharide-induced interleukin-6 and granulocyte-macrophage colony-stimulating factor production in macrophages. Immunology 120, 242-250. Klebanoff, C.A., Spencer, S.P., Torabi-Parizi, P., Grainger, J.R., Roychoudhuri, R., Ji, Y., Sukumar, M., Muranski, P., Scott, C.D., Hall, J.A., et al. (2013). Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 210, 1961-1976. Lavrik, I.N., and Krammer, P.H. (2012). Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19, 36-41. LeibundGut-Landmann, S., Gross, O., Robinson, M.J., Osorio, F., Slack, E.C., Tsoni, S.V., Schweighoffer, E., Tybulewicz, V., Brown, G.D., Ruland, J., et al. (2007a). Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8, 630-638. LeibundGut-Landmann, S., Grosz, O., Robinson, M.J., Osorio, F., Slack, E.C., Tsoni, S.V., Schweighoffer, E., Tybulewicz, V., Brown, G.D., Ruland, J., et al. (2007b). Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8, 630-638. Lens, S.M., Kataoka, T., Fortner, K.A., Tinel, A., Ferrero, I., MacDonald, R.H., Hahne, M., Beermann, F., Attinger, A., Orbea, H.A., et al. (2002). The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol Cell Biol 22, 5419-5433. Lepelletier, Y., Zollinger, R., Ghirelli, C., Raynaud, F., Hadj-Slimane, R., Cappuccio, A., Hermine, O., Liu, Y.J., and Soumelis, V. (2010). Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs). Blood 116, 3389-3397. Liu, F., Wu, H.Y., Wesselschmidt, R., Kornaga, T., and Link, D.C. (1996). Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5, 491-501. Mack, A., and Hacker, G. (2002). Inhibition of caspase or FADD function blocks proliferation but not MAP kinase-activation and interleukin-2-production during primary stimulation of T cells. Eur J Immunol 32, 1986-1992. Maelfait, J., Vercammen, E., Janssens, S., Schotte, P., Haegman, M., Magez, S., and Beyaert, R. (2008). Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J Exp Med 205, 1967-1973. Manz, M.G., and Boettcher, S. (2014). Emergency granulopoiesis. Nat Rev Immunol 14, 302-314. Matsuda, S., Moriguchi, T., Koyasu, S., and Nishida, E. (1998). T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem 273, 12378-12382. Matsuzawa, A., Saegusa, K., Noguchi, T., Sadamitsu, C., Nishitoh, H., Nagai, S., Koyasu, S., Matsumoto, K., Takeda, K., and Ichijo, H. (2005). ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6, 587-592. Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31, 563-604. Mills, K.H. (2011). TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11, 807-822. Mnich, S.J., Blanner, P.M., Hu, L.G., Shaffer, A.F., Happa, F.A., O'Neil, S., Ukairo, O., Weiss, D., Welsh, E., Storer, C., et al. (2010). Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int Immunopharmacol 10, 1170-1176. Motz, G.T., and Coukos, G. (2013). Deciphering and reversing tumor immune suppression. Immunity 39, 61-73. Moubarak, R.S., Sole, C., Pascual, M., Gutierrez, H., Llovera, M., Perez-Garcia, M.J., Gozzelino, R., Segura, M.F., Iglesias-Guimarais, V., Reix, S., et al. (2010). The death receptor antagonist FLIP-L interacts with Trk and is necessary for neurite outgrowth induced by neurotrophins. J Neurosci 30, 6094-6105. Naik, S.H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O'Keeffe, M., and Shortman, K. (2006). Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7, 663-671. Naik, S.H., Sathe, P., Park, H.Y., Metcalf, D., Proietto, A.I., Dakic, A., Carotta, S., O'Keeffe, M., Bahlo, M., Papenfuss, A., et al. (2007). Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8, 1217-1226. Nakajima, A., Kojima, Y., Nakayama, M., Yagita, H., Okumura, K., and Nakano, H. (2008). Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 27, 76-84. Nakajima, A., Komazawa-Sakon, S., Takekawa, M., Sasazuki, T., Yeh, W.C., Yagita, H., Okumura, K., and Nakano, H. (2006). An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 25, 5549-5559. Oberst, A., Dillon, C.P., Weinlich, R., McCormick, L.L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G.S., and Green, D.R. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367. Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G. (2007). Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8, 1207-1216. Safa, A.R., and Pollok, K.E. (2011). Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers (Basel) 3, 1639-1671. Sancho, D., and Reis e Sousa, C. (2012). Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30, 491-529. Sathe, P., Vremec, D., Wu, L., Corcoran, L., and Shortman, K. (2013). Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 121, 11-19. Satpathy, A.T., Wu, X., Albring, J.C., and Murphy, K.M. (2012). Re(de)fining the dendritic cell lineage. Nat Immunol 13, 1145-1154. Shirley, S., and Micheau, O. (2013). Targeting c-FLIP in cancer. Cancer Lett 332, 141-150. Shortman, K., and Naik, S.H. (2007). Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7, 19-30. Stranges, P.B., Watson, J., Cooper, C.J., Choisy-Rossi, C.M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., et al. (2007). Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629-641. Strasser, A., Jost, P.J., and Nagata, S. (2009). The many roles of FAS receptor signaling in the immune system. Immunity 30, 180-192. Tai, T.S., Fang, L.W., and Lai, M.Z. (2004). c-FLICE inhibitory protein expression inhibits T-cell activation. Cell Death Differ 11, 69-79. Willems, F., Amraoui, Z., Vanderheyde, N., Verhasselt, V., Aksoy, E., Scaffidi, C., Peter, M.E., Krammer, P.H., and Goldman, M. (2000). Expression of c-FLIP(L) and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood 95, 3478-3482. Wilson, N.S., Dixit, V., and Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10, 348-355. Wu, Y.H., Kuo, W.C., Wu, Y.J., Yang, K.T., Chen, S.T., Jiang, S.T., Gordy, C., He, Y.W., and Lai, M.Z. (2014). Participation of c-FLIP in NLRP3 and AIM2 inflammasome activation. Cell Death Differ 21, 451-461. Xu, S., Huo, J., Lee, K.G., Kurosaki, T., and Lam, K.P. (2009). Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem 284, 7038-7046. Yang, Q.H., Church-Hajduk, R., Ren, J., Newton, M.L., and Du, C. (2003). Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17, 1487-1496. Yeh, W.C., Itie, A., Elia, A.J., Ng, M., Shu, H.B., Wakeham, A., Mirtsos, C., Suzuki, N., Bonnard, M., Goeddel, D.V., et al. (2000). Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633-642. Yu, J.W., and Shi, Y. (2008). FLIP and the death effector domain family. Oncogene 27, 6216-6227. Zanoni, I., and Granucci, F. (2012). Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs). Eur J Immunol 42, 1924-1931. Zanoni, I., Ostuni, R., Capuano, G., Collini, M., Caccia, M., Ronchi, A.E., Rocchetti, M., Mingozzi, F., Foti, M., Chirico, G., et al. (2009). CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460, 264-268. Zhang, H., Rosenberg, S., Coffey, F.J., He, Y.W., Manser, T., Hardy, R.R., and Zhang, J. (2009). A role for cFLIP in B cell proliferation and stress MAPK regulation. J Immunol 182, 207-215. Zhang, N., and He, Y.W. (2005). An essential role for c-FLIP in the efficient development of mature T lymphocytes. J Exp Med 202, 395-404. Zhang, N., Hopkins, K., and He, Y.W. (2008a). c-FLIP protects mature T lymphocytes from TCR-mediated killing. J Immunol 181, 5368-5373. Zhang, N., Hopkins, K., and He, Y.W. (2008b). The long isoform of cellular FLIP is essential for T lymphocyte proliferation through an NF-kappaB-independent pathway. J Immunol 180, 5506-5511. Zhu, W., Downey, J.S., Gu, J., Di Padova, F., Gram, H., and Han, J. (2000). Regulation of TNF expression by multiple mitogen-activated protein kinase pathways. J Immunol 164, 6349-6358. Zitvogel, L., Galluzzi, L., Smyth, M.J., and Kroemer, G. (2013). Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74-88 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52948 | - |
dc.description.abstract | The caspase-8-specific inhibitor, cellular FLICE inhibitory protein (c-FLIP), inhibits death receptor-induced apoptosis by blocking caspase-8 activation. c-FLIP has also been reported to transmit activation signals, but the exact signals mediated by c-FLIP remain unclear. The aim of this study is to investigate the role of c-FLIP in the development and activation of dendritic cells (DCs) by using c-FLIPf/fCD11c-Cre (DC-specific) conditional knockout mice. We identified a novel function of c-FLIP involving in inhibition of myeloid cell activation through selective innate signaling pathway. We found that conditional knockout of c-FLIP in dendritic cells led to neutrophilia and splenomegaly. Peripheral dendritic cell populations, including CD11b+ conventional DC (cDC), CD8+ cDC, and plasmacytoid DC (pDC), were not affected by c-FLIP absence. Our results also indicated that c-FLIP-knockout cDC, pDC, and bone marrow-derived DC (BMDC) displayed enhanced production of TNF-a, IL-2, or G-CSF in response to stimulation of TLR4, TLR2, and Dectin-1. Splenic DC maturation and T cell priming ability were also increased in c-FLIPf/fCD11c-Cre mice. Consistent with the ability of c-FLIP to inhibit the activation of p38 MAPK, the enhanced activation of c-FLIP-deficient BMDCs could be partly linked to an increased activation of p38 MAPK after engagement of innate receptors. We showed there was an interaction between c-FLIP and p38 MAPK or c-FLIP and ASK1. In addition, the increased activation in c-FLIP-deficient dendritic cells was caspase-8-independent. Our results reveal a novel inhibitory role of c-FLIP in myeloid cell activation through modulating p38 MAPK signaling and demonstrate the unexpected anti-inflammatory activity of c-FLIP. Moreover, our observations suggest that cancer therapy target c-FLIP downregulation may facilitate DC activation and increase T cell immunity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:35:32Z (GMT). No. of bitstreams: 1 ntu-104-D96449006-1.pdf: 10613326 bytes, checksum: 2c7cef91a26c493ee09b34a2e9bad353 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Table of content
口試委員會審定書 致謝……………………………………………...……………..…i 摘要……………………………………………...…………..…ii Abstract…………………………………………...…….………iii Abbreviation……………………………………...………….….v Chapter I Introduction………………………..……………1 1. Cellular FLICE-like inhibitory protein…………………………………….2 2. Dendritic cells…………………………………………………………..….5 3. Pattern recognition receptors…………………....…………...…………….7 4. Mitogen-activated protein kinases…………………………...…………….8 5. c-FLIP and myeloid cells…………………………………….......……….10 6. Granulocyte-colony stimulating factor and neutrophils……….…….….11 7. Aims…………………………..……………………………………..….12 Chapter II Materials and Methods……………..…..………15 1. Reagents……………………………...…………………..……………….16 2. Mouse………………………………………………………..………..….17 3. Flow cytometry………………………………......…………...………….18 4. Flow antibodies……………………………….……………...………..….18 5. Preparation and purification of splenic DCs…………………………..….20 6. Preparation and purification of BMDCs……….…….………………..….20 7. Preparation of blood and PEC…………………………………….…..….21 8. Immunoprecipitation……………………….…………………..……..….21 9. Western blot………………….....…………...………………...………….22 10. Anti-G-CSF treatment……………………………………...…………….23 11. Knockdown of caspase-8 in dendritic cells…………………...………….24 12. Antigen presentation in DC-T cell cocultures……….…….………….….24 13. Quantitative PCR……………………………………………...………….25 14. Cell viability analysis……………………………..…………………..….26 15. Determination of caspase-8 activity………………………..…………….26 16. Analysis of murine T cell activation………………………..…………….27 17. Single cell calcium imaging………………………………..…………….27 18. NFAT nuclear translocation and IL-2 production……………………….28 19. Statistical analysis……………………………………...…...…………….28 Chapter III Results………….…………………….…...……29 1. Conditional knockout of c-FLIP in dendritic cells leads to increase of neutrophils in bone marrow…………….….…………………..……...….30 2. c-FLIP-deficiency in dendritic cells results in splenomegaly and peripheral neutrophilia.…………………………..…………..……………….…..….32 3. Increased expression of MHC II, CD80 and CD86 in c-FLIP-deficient DCs…………………………………………….……...………………….35 4. Increased production of TNF-and IL-2 in c-FLIP-deficient bone marrow- derived DCs.………………………………………………...…...……….36 5. Enhanced p38 MAPK activation in c-FLIP-deficient BMDCs…….…….38 6. Differential production of G-CSF may account for neutrophilia in c-FLIP condition knockout mice…………………………………..…...…..…….40 7. The suppressive activity of c-FLIP is caspase-8 independent……...…….41 8. Calcium influx, NFATc activation and proliferation in T cells are defected in c-FLIPL CKO T cells……………..…………………..……………….43 Chapter VI Discussion…………………………….……...…45 1. DCs are different from macrophages in their sensitivity to deletion of c-FLIP………………………….……….….…………………..……...….46 2. The generation of neutrophilia in c-FLIPf/fCD11c-Cre mice.…….……...47 3. Linkage between in vivo and in vitro…………………………….……….48 4. The innate receptor signaling affected by c-FLIP in DCs.............……….49 5. The molecular processes affected by c-FLIP in p38 MAPK activation……………………………………………………………....... 51 6. Novel biological activity of c-FLIP in myeloid cells through the suppression of activation signals.……………………………....…..…….52 7. The role of c-FLIP in cancer therapy.................................................…….53 References…………………………………………..…….……55 Figures………………………………………………...…..……71 Appendix…………………………………………….......……110 | |
dc.language.iso | en | |
dc.title | c-FLIP 在樹突細胞的發育與活化中扮演的角色 | zh_TW |
dc.title | The role of c-FLIP in the development and activation of dendritic cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 許秉寧(Ping-Ning Hsu),謝世良(Shie-Liang Hsieh),繆希椿(Shi-Chuen Miaw),羅傅倫(Steve R. Roffler) | |
dc.subject.keyword | 樹突細胞, | zh_TW |
dc.subject.keyword | c-FLIP,dendritic cells,p38 MAPK, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 免疫學研究所 | zh_TW |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 10.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。