請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曲芳華(Fang-Hua Chu) | |
| dc.contributor.author | Yan-Liang Lin | en |
| dc.contributor.author | 林彥良 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:35:21Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-12 | |
| dc.identifier.citation | Abe, I., Prestwich, G.D., 1995. Molecular cloning, characterization, and functional expression of rat oxidosqualene cyclase cDNA. Proc. Natl. Acad. Sci. U. S. A. 92, 9274–9278.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic Local Alignment Search Tool. J Mol Biol. 215, 403–410. Arnold, K., Bordoli, L., Kopp, J., Schwede, T., 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201. Balciunas, D., Ronne, H., 2000. Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25, 274–276. Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. Bastian, M., Heymann, S., 2009. Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362. Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. Blow, N., 2009. Transcriptomics: the digital generation. Nature 458, 239–242. Bok, J.W., Wiemann, P., Garvey, G.S., Lim, F.Y., Haas, B., Wortman, J., Keller, N.P., 2014. Illumina identification of RsrA, a conserved C2H2 transcription factor coordinating the NapA mediated oxidative stress signaling pathway in Aspergillus. BMC Genomics 15, 1011. Brakhage, A.A., 2013. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32. Bromann, K., Toivari, M., Viljanen, K., Vuoristo, A., Ruohonen, L., Nakari-Setälä, T., 2012. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans. PLoS One 7, e35450. Caracuel, Z., Roncero, M.I.G., Espeso, E.A., González-Verdejo, C.I., García-Maceira, F.I., Di Pietro, A., 2003. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol. Microbiol. 48, 765–779. Chang, S.S., Zhang, Z., Liu, Y., 2012. RNA interference pathways in fungi: mechanisms and functions. Annu. Rev. Microbiol. 66, 305–323. Chang, T.H., 2012. Identification of conserved microRNAs and their targets in PnWB phytoplasma induced leafy flower of Cantharanthus roseus. Master theis, Natl. Taiwan Univ. Chang, T.T., Chou, W.N., 1995. Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99, 756–758. Chang, T.T., Chou, W.N., 2004. Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot. Bull. Acad. Sin. 45, 347–352. Chen, E.C.F., Su, Y.H., Kanagarajan, S., Agrawal, D.C., Tsay, H.S., 2009a. Development of an activation tagging system for the basidiomycetous medicinal fungus Antrodia cinnamomea. Mycol. Res. 113, 290–297. Chen, H.C., 2004. Promotion of hyphal growth in Antrodia camphorata from coniferous trees and chemical studies on Antrodia camphorata mycelia. Master thesis, Taipei Medi. Univ. Chen, J.J., Lin, W.J., Liao, C.H., Shieh, P.C., 2007. Anti-inflammatory benzenoids from Antrodia camphorata. J. Nat. Prod. 70, 989–992. Chen, L.K., 2006. Cloning and characterization of terpenoid biosynthesis genes of Antrodia cinnamomea. Master thesis, Natl. Taiwan Univ. Chen, R., Jiang, N., Jiang, Q., Sun, X., Wang, Y., Zhang, H., Hu, Z., 2014. Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 9, e104956. Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D.R., Zhou, S., Li, C., Wang, L., Guo, X., Sun, Y., Luo, H., Li, Y., Song, J., Henrissat, B., Levasseur, A., Qian, J., Li, J., Luo, X., Shi, L., He, L., Xiang, L., Xu, X., Niu, Y., Li, Q., Han, M.V., Yan, H., Zhang, J., Chen, H., Lv, A., Wang, Z., Liu, M., Schwartz, D.C., Sun, C., 2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 3, 1–9. Chen, Y.J., Chou, C.J., Chang, T.T., 2009b. Compound MMH01 possesses toxicity against human leukemia and pancreatic cancer cells. Toxicol. In Vitro 23, 418–424. Cherng, I.H., Wu, D.P., Chiang, H.C., 1996. Triterpenoids from Antrodia cinnamomea. Phytochemistry 41, 263–267. Chiang, H.C., Wu, D.P., Cherng, I.W., Ueng, C.H., 1995. A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry 39, 613–616. Chooi, Y.H., Hong, Y.J., Cacho, R.A., Tantillo, D.J., Tang, Y., 2013. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis. J. Am. Chem. Soc. 135, 16805–16808. Chou, M.C., Chang, R., Hung, Y.H., Chen, Y.C., Chiu, C.H., 2013. Antrodia camphorata ameliorates high-fat-diet induced hepatic steatosis via improving lipid metabolism and antioxidative status. J. Funct. Foods 5, 1317–1325. Chu, F.H., Lee, Y.R., Chou, S.J., Chang, T.T., Shaw, J.F., 2008. Isolation and analysis of genes specifically expressed during basidiomatal development in Antrodia cinnamomea by subtractive PCR and cDNA microarray. FEMS Microbiol. Lett. 280, 150–159. Compe, E., Egly, J.M., 2012. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 476–476. Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., Robles, M., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. Dai, X., Zhao, P.X., 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39, W155–159. Davis, E., Croteau, R., 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Biosynthesis, Springer Berlin Heidelberg, pp. 53–95. Deng, J.S., Huang, S.S., Lin, T.H., Lee, M.M., Kuo, C.C., Sung, P.J., Hou, W.C., Huang, G., Kuo, Y., 2013. Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. J. Agric. Food Chem. 61, 5064–5071. Deng, J.Y., Chen, S.J., Jow, G.M., Hsueh, C.W., Jeng, C.J., 2009. Dehydroeburicoic acid induces calcium- and calpain-dependent necrosis in human U87MG glioblastomas. Chem. Res. Toxicol. 22, 1817–1826. Du, Y.C., Chang, F.R., Wu, T.Y., Hsu, Y.M., El-Shazly, M., Chen, C.F., Sung, P.J., Lin, Y.Y., Lin, Y.H., Wu, Y.C., Lu, M.C., 2012. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models. Phytomedicine 19, 788–796. Finkel, T., 2003. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254. Gardner, P.P., Daub, J., Tate, J.G., Nawrocki, E.P., Kolbe, D.L., Lindgreen, S., Wilkinson, A.C., Finn, R.D., Griffiths-Jones, S., Eddy, S.R., Bateman, A., 2009. Rfam: updates to the RNA families database. Nucleic Acids Res. 37, D136–140. Geethangili, M., Tzeng, Y.M., 2011. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based. Complement. Alternat. Med. Gessler, N.N., Leonovich, O.A., Rabinovich, Y.M., Rudchenko, M.N., Belozerskaya, T.A., 2006. A comparative study of the components of the antioxidant defense system during growth of the mycelium of a wild-type Neurospora crassa strain and mutants, white collar-1 and white collar-2. Appl. Biochem. Microbiol. 42, 293–297. Gilbertson, R.L., 1980. Wood-rotting fungi of north America. Mycologia 72, 1–49. Godio, R.P., Fouces, R., Gudiña, E.J., Martín, J.F., 2004. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr. Genet. 46, 287–294. Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., Shabalov, I., 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704. Ha, M., Kim, V.N., 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524. Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., Leduc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. Hatoh, K., Izumitsu, K., Morita, A., Shimizu, K., Ohta, A., Kawai, M., Yamanaka, T., Neda, H., Ota, Y., Tanaka, C., 2013. Transformation of the mushroom species Hypsizigus marmoreus, Flammulina velutipes, and Grifola frondosa by an Agrobacterium-mediated method using a universal transformation plasmid. Mycoscience 54, 8–12. Hibbett, D.S., Donoghue, M.J., 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst. Biol. 50, 215–242. Hill, R.A., Connolly, J.D., 2011. Triterpenoids. Nat. Prod. Rep. 28, 1087–1117. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M., Schell, J., 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 163, 181–187. Hsieh, Y.H., Chu, F.H., Wang, Y.S., Chien, S.C., Chang, S.T., Shaw, J.F., Chen, C.Y., Hsiao, W.W., Kuo, Y.H., Wang, S.Y., 2010. Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J. Agric. Food Chem. 58, 3153–3158. Hu, Z.L., Bao, J., Reecy, J., 2008. CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online J. Bioinforma. 9, 108–112. Huang, X., 1999. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877. Itoh, T., Tokunaga, K., Matsuda, Y., Fujii, I., Abe, I., Ebizuka, Y., Kushiro, T., 2010. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat. Chem. 2, 858–864. Jiang, N., Yang, Y., Janbon, G., Pan, J., Zhu, X., 2012. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 7, e52734. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J., 2005. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–427. Kang, K., Zhong, J., Jiang, L., Liu, G., Gou, C.Y., Wu, Q., Wang, Y., Luo, J., Gou, D., 2013. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing. PLoS One 8, e76288. Keller, O., Kollmar, M., Stanke, M., Waack, S., 2011. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757–763. Kihara, J., Moriwaki, A., Tanaka, N., Tanaka, C., Ueno, M., Arase, S., 2008. Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett. 281, 221–227. Kozomara, A., Griffiths-Jones, S., 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–73. Krol, J., Loedige, I., Filipowicz, W., 2010. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610. Kuo, C.Y., 2008. Development and application of mushroom heterologous gene expression systems. Doctoral dissertation, Natl. Taiwan Univ. Kuo, C.Y., Chou, S.Y., Huang, C.T., 2004. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl. Microbiol. Biotechnol. 65, 593–599. Kuo, C.Y., Huang, C.T., 2008. A reliable transformation method and heterologous expression of β-glucuronidase in Lentinula edodes. J. Microbiol. Methods 72, 111–115. Kurahashi, A., Shimoda, T., Sato, M., Fujimori, F., Hirama, J., Nishibori, K., 2015. A putative transcription factor Gf.BMR1 in Grifola frondosa, the homolog of BMR1 in Bipolaris oryzae, was strongly induced by near-ultraviolet light and blue light. Mycoscience 56, 177–182. Lagesen, K., Hallin, P., R?dland, E.A., Staerfeldt, H.H., Rognes, T., Ussery, D.W., 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108. Lander, E.S., Waterman, M.S., 1988. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239. Lau, S.K.P., Chow, W.N., Wong, A.Y.P., Yeung, J.M.Y., Bao, J., Zhang, N., Lok, S., Woo, P.C.Y., Yuen, K.Y., 2013. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl. Trop. Dis. 7, e2398. Lee, C.H., Hsu, K.H., Wang, S.Y., Chang, T.T., Chu, F.H., Shaw, J.F., 2010a. Cloning and characterization of the lanosterol 14α-demethylase gene from Antrodia cinnamomea. J. Agric. Food Chem. 58, 4800–4807. Lee, H.C., Li, L., Gu, W., Xue, Z., Crosthwaite, S.K., Llexander, Lewis, Z.A., Freitag, M., Selker, E.U., Mello, C.C., Liu, Y., 2010b. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol. Cell 38, 803–814. Lewis, B.P., Shih, I., Jones-Rhoades, M.W., Bartel, D.P., Burge, C.B., 2003. Prediction of mammalian microRNA targets. Cell 115, 787–798. Lin, J.Y., Wu, T.Z., Chou, J.C., 2006. In vitro induction of fruiting body in Antrodia cinnamomea - a medicinally important fungus. Bot. Stud. 47, 267–272. Lin, Y.L., Chen, C.Y., Hsio, W.W., Chu, F.H., 2014. Molecular charaterization of β-1,4-endoglucanase from Antrodia cinnamomea. J. Exp. For. Natl. Taiwan Univ. 28, 131–138. Lin, Y.L., Lee, Y.R., Tsao, N.W., Wang, S.Y., Shaw, J.F., Chu, F.H., 2015a. Characterization of the 2,3-oxidosqualene cyclase gene from Antrodia cinnamomea and enhancement of cytotoxic triterpenoid compound production. J. Nat. Prod. 78, 1556–1562. Lin, Y.L., Ma, L.T., Lee, Y.R., Lin, S.S., Wang, S.Y., Chang, T.T., Shaw, J.F., Li, W.H., Chu, F.H., 2015b. MicroRNA-like small RNAs prediction in the development of Antrodia cinnamomea. PLoS One 10, e0123245. Lin, Y.L., Wen, T.N., Chang, S.T., Chu, F.H., 2011. Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan. Int. J. Med. Mushrooms 13, 473–481. Liu, C.J., Chiang, C.C., Chiang, B.H., 2012. The elicited two-stage submerged cultivation of Antrodia cinnamomea for enhancing triterpenoids production and antitumor activity. Biochem. Eng. J. 64, 48–54. Liu, L.Y.D., Tseng, H.I., Lin, C.P., Lin, Y.Y., Huang, Y.H., Huang, C.K., Chang, T.H., Lin, S.S., 2014. High-throughput tanscriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol. 55 , 942–957. López-Gallego, F., Wawrzyn, G.T., Schmidt-Dannert, C., 2010. Selectivity of fungal sesquiterpene synthases: role of the active site’s H-1 alpha loop in catalysis. Appl. Environ. Microbiol. 76, 7723–7733. Lorenz, R., Bernhart, S.H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., 2011. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26. Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964. Lu, M.C., El-Shazly, M., Wu, T.Y., Du, Y.C., Chang, T.T., Chen, C.F., Hsu, Y.M., Lai, K.H., Chiu, C.P., Chang, F.R., Wu, Y.C., 2013. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 139, 124–156. Lu, M.Y.J., Fan, W.L., Wang, W.F., Chen, T., Tang, Y.C., Chu, F.H., Chang, T.T., Wang, S.Y., Li, M.Y., Chen, Y.H., Lin, Z.S., Yang, K.J., Chen, S.M., Teng, Y.C., Lin, Y.L., Shaw, J.F., Wang, T.F., Li, W.H., 2014. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc. Natl. Acad. Sci. U. S. A. 111, E4743–4752. Ma, T.W., Lai, Y., Yang, F.C., 2014. Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract. Bioprocess Biosyst. Eng. 37, 2251–2261. Male, K.B., Rao, Y.K., Tzeng, Y.M., Montes, J., Kamen, A., Luong, J.H.T., 2008. Probing inhibitory effects of Antrodia camphorata isolates using insect cell-based impedance spectroscopy: inhibition vs chemical structure. Chem. Res. Toxicol. 21, 2127–2133. Marchler-Bauer, A., Bryant, S.H., 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–331. Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Lu, S., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Bryant, S.H., 2013. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–352. Mardis, E.R., 2008. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141. Mardis, E.R., 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6, 287–303. Marsh, E.N., Chang, M.D., Townsend, C.A., 1992. Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31, 12648–12657. Martín, J.F., 2015. Fungal transformation: from protoplasts to targeted recombination systems. Genetic Transformation Systems in Fungi, Vol. 1. Springer. pp3–18. Metzker, M.L., 2010. Sequencing technologies - the next generation. Nat. Rev. 11, 31–46. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–185. Mutz, K.O., Heilkenbrinker, A., Lönne, M., Walter, J.G., Stahl, F., 2013. Transcriptome analysis using next-generation sequencing. Curr. Opin. Biotechnol. 24, 22–30. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612. Poralla, K., 1994. The possible role of a repetitive amino acid motif in evolution of triterpenoid cyclases. Bioorg. Med. Chem. Lett. 4, 285–290. Purschwitz, J., Müller, S., Kastner, C., Fischer, R., 2006. Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9, 566–571. Rabinovich, M.L., Bolobova, A.V., Vasil’chenko, L.G., 2004. Fungal decomposition of natural aromatic structures and xenobiotics: A Review. Appl. Biochem. Microbiol. 40, 1–17. Ram, M., Khan, M.A., Jha, P., Khan, S., Kiran, U., Ahmad, M.M., Javed, S., Abdin, M.Z., 2010. HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiol. Plant. 32, 859–866. Ramamoorthy, V., Dhingra, S., Kincaid, A., Shantappa, S., Feng, X., Calvo, A.M., 2013. The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8, e74122. Rao, Y.K., Wu, A.T.H., Geethangili, M., Huang, M.T., Chao, W.J., Wu, C.H., Deng, W.P., Yeh, C.T., Tzeng, Y.M., 2011. Identification of antrocin from Antrodia camphorata as a selective and novel class of small molecule inhibitor of Akt/mTOR signaling in metastatic breast cancer MDA-MB-231 cells. Chem. Res. Toxicol. 24, 238–245. Reiser, J., Muheim, A., Hardeggea, M., Frank, G., Fiechter, A., 1994. Aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 269, 28152–28159. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., Bartel, D.P., 2002. Prediction of plant microRNA targets. Cell 110, 513–520. Romano, N., Macino, G., 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353. Scott, J., 2012. Social network analysis. SAGE. Shen, C.C., Kuo, Y.C., Huang, R.L., Lin, L.C., Don, M.J., Chang, T.T., Chou, C.J., 2003. New ergostane and lanostane from Antrodia Camphorata. J. Chinese Med. 14, 247–258. Shendure, J., Ji, H., 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145. Shih, Y.L., 2009. Effects of different culture media and conditions on the mycelial growth of Antrodia camphorata T. T. Chang & W. N. Chou. Master thesis, Natl. Pingtung Univ. Sci. Technol. Stanke, M., Steinkamp, R., Waack, S., Morgenstern, B., 2004. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312. Starks, C.M., Back, K., Chappell, J., Noel, J.P., 1997. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science. 277, 1815–1820. Su, Y.H., 2006. Studies on the Agrobacterium mediated transformation in Antrodia cinnamomea and the identification of transgenic lines. Master thesis, Chaoyang Univ. Technol. Takeuchi, T., Watanabe, Y., Takano-Shimizu, T., Kondo, S., 2006. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev. Dyn. 235, 2449–2459. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. Tang, J.D., Perkins, A.D., Sonstegard, T.S., Schroeder, S.G., Burgess, S.C., Diehl, S. V, 2012. Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa. Appl. Environ. Microbiol. 78, 2272–2281. Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. 1–14. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E. V, Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A., 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. Tholl, D., 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297–304. Wang, L., Feng, Z., Wang, X., Wang, X., Zhang, X., 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138. Wawrzyn, G.T., Bloch, S.E., Schmidt-Dannert, C., 2012a. Discovery and characterization of terpenoid biosynthetic pathways of fungi. Methods in enzymology. 515: 83–105. Elsevier Inc. Wawrzyn, G.T., Quin, M.B., Choudhary, S., López-Gallego, F., Schmidt-Dannert, C., 2012b. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol. 19, 772–783. Wen, C.H., Lin, S.S., Chu, F.H., 2015. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan Gum. Plant Cell Physiol. 56 , 163–174. Wendt, K.U., 1997. Structure and function of a squalene cyclase. Science. 277, 1811–1815. Whittington, D.A., Wise, M.L., Urbansky, M., Coates, R.M., Croteau, R.B., Christianson, D.W., 2002. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc. Natl. Acad. Sci. U. S. A. 99, 15375–15380. Worrall, J.J., Anagnost, S.E., Zabel, R.A., 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89, 199–219. Wu, S.H., Yu, Z.H., Dai, Y.C., Chen, C.T., Su, C.H., Chen, L.C., Hsu, W.C., Hwang, G.Y., 2004. Taiwanofungus, polypore new genus. Fungal Sci. 19, 109–116. Yang, F.C., Huang, H.C., Yang, M.J., 2003. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb. Technol. 33, 395–402. Yang, S.W., Shen, Y.C., Chen, C.H., 1996. Steroids and triterpenoids of Antodia cinnamomeaa – fungus parasitic on Cinnamomum micranthum. Phytochemistry 41, 1389–1392. Yeh, C.T., Rao, Y.K., Yao, C.J., Yeh, C.F., Li, C.H., Chuang, S.E., Luong, J.H.T., Lai, G.M., Tzeng, Y.M., 2009. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett. 285, 73–79. Yeh, C.T., Huang, W.C., Rao, Y.K., Ye, M., Lee, W.H., Wang, L.S., Tzeng, D.T.W., Wu, C.H., Shieh, Y.S., Huang, C.Y.F., Chen, Y.J., Hsiao, M., Wu, A.T.H., Yang, Z., Tzeng, Y.M., 2013. A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis 34, 2918–2928. Yu, G.J., Wang, M., Huang, J., Yin, Y.L., Chen, Y.J., Jiang, S., Jin, Y.X., Lan, X.Q., Wong, B.H.C., Liang, Y., Sun, H., 2012. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7, e44031. Zhou, J., Fu, Y., Xie, J., Li, B., Jiang, D., Li, G., Cheng, J., 2012a. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol. Genet. genomics 287, 275–282. Zhou, Q., Wang, Z., Zhang, J., Meng, H., Huang, B., 2012b. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol. 116, 1156–1162. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52945 | - |
| dc.description.abstract | 牛樟芝是臺灣重要的藥用真菌,所具有之多樣且特殊的代謝產物提供牛樟芝在醫藥發展上莫大的潛力,其中萜類化合物為牛樟芝代謝產物中重要生物活性的來源之一,人工培養之菌絲體難以誘導子實體生成且缺乏多種子實體所特有之代謝產物,為克服牛樟芝在人工培養上所面臨的難處,解答菌絲體與子實體之差異,本論文結合不同體學的研究方法針對牛樟芝萜類生合成進行系統生物學的研究。
利用蛋白質二維膠體電泳方法比較牛樟芝菌絲體品系B506與野生型子實體蛋白質體學上的差異,分別從菌絲體與子實體中定位出606與514個蛋白質點,並挑選60個只存在於子實體之蛋白質點進行質譜定序,經由序列比對後雖然沒有找到和萜類生合成相關之蛋白質,但也從中發現牛樟芝子實體與生理代謝、逆境反應、細胞結構等重要的蛋白質。 為了建立牛樟芝重要的遺傳訊息,利用次世代定序的方式針對牛樟芝菌絲體單核品系S28進行染色體核酸的定序,推測牛樟芝的染色體大小為45.58 Mb,定序覆蓋率約為32×,經由組裝後共獲得1,242條scaffolds總長度為27,717,145 bp,包含6,522個預測的基因。針對牛樟芝的液態培養菌絲體品系B479與野生型子實體利用次世代定序進行轉錄體的定序,分別獲得19,875,544及25,296,502條clean reads,混合組裝後共得到13,109條unigenes,平均長度1,615 bp,N50為2,770 bp,總長度為21,174,312 bp,其中7,851條具有功能註解,經由差異性分析可得到共2,282個基因在牛樟芝菌絲體與子實體有不同的表現程度。針對牛樟芝的液態培養菌絲體品系WSY-01與野生型子實體利用次世代定序進行微核糖核酸的定序,分別獲得10,879,926及18,291,833條clean reads,經由後續分析與篩選總共獲得4條具有保守性與63條牛樟芝全新未註解的微核糖核酸序列,微核糖核酸長度分布最多為23 nt與偏好5′ uracil,經由微核糖核酸目標基因的預測,可能參與在調控三萜類生合成途徑與其他細胞分化重要的相關基因。 在三萜類生合成途徑的研究中,本論文鑑定了一個參與在生合成途經中重要的關鍵環化酵素AcOSC,利用功能缺失之酵母菌進行異源蛋白質表現並配合GC/MS驗證其功能為lanosterol synthase,隨後利用農桿菌感染法針對牛樟芝菌絲體進行轉基因實驗,經過篩選後獲得多個牛樟芝AcOSC轉基因品系並命名為ACT,並利用LC-MS/MS、HPLC與NMR等代謝體學的分析方式分析牛樟芝菌絲體轉殖株,藉由轉基因的方式提昇AcOSC基因而得到提升下游三萜類產物(dehydrosulphurenic acid與dehydroeburicoic acid)最高達3倍之多。 藉由次世代定序所建立之轉錄體基因資料庫,經由保守性序列的比對搜尋找到12個預測的萜類生合成酵素,利用大腸桿菌進行異源重組蛋白質表現並搭配GC/MS進行活性分析,最終有7個重組蛋白質具有萜類生合成的活性並可以產生一個或是多種的單、倍半萜類產物,並加以命名為AcTPS,同時結合了SPME吸附GC/MS來觀察菌絲體與子實體之萜類產物與萜類基因的相互關係,發現仍有多種難以鑑定的萜類產物,據此也將AcTPS序列與牛樟芝單核品系S28之基因體序列進行比對,尋找相關的基因叢集,推測尚有多種未知的合成酵素或是後修飾酵素參與在萜類的生合成途徑中。 最後本論文利用次世代定序所獲得之轉錄體基因資料庫相關資料設計了牛樟芝的客製化微矩陣列晶片,並進行牛樟芝四個特殊發育時期的基因表現分析(AL:液態培養菌絲體、EAP:固態培養轉化為子實體前之菌絲體、AF:固態培養之子實體、AT:野生型子實體),將所得數據正規化後進行ANOVA分析、表現倍率之篩選與相互關係之計算,進而建立牛樟芝的基因相互關係網絡圖,從中找到許多參與在萜類生合成途徑中的重要基因如:acetyl-CoA acetyltransferase、HMG-CoA reductase、diphosphomevalonate decarboxylase、isopentenyl pyrophosphate isomerase、AcTPS3、AcTPS5、cytochrome p450與AcCYP51,而調控因子如:transcription factor PacC、transcription factor IIIC、TFIIH basal transcription factor、transcription initiation factor IIF、C2H2 transcription factor、transcription factor Gf. BMR1與jumonji superfamily,雖然本論文經由基因網絡圖的建立,找到許多與萜類生合成相關的調控因子與相關基因,但是仍然有許多的基因尚未加以討論與驗證,而本論文所獲得之所有資料實為未來牛樟芝在進一步生產特定二次代謝產物與型態轉化之重要的參考。 | zh_TW |
| dc.description.abstract | Antrodia cinnamomea is a precious, host-specific brown-rot fungus that has been used as a folk medicine in Taiwan for centuries is known to have diverse bioactive compounds with potent pharmacological activity. Terpenoids one of the most important secondary metabolites contribute the bioactivity of A. cinnamomea. Artificial culture mycelium is hard to transform into fruiting body and deficient in certain bioactive compounds. Systems biology approach was use to study the terpenoids biosynthesis in A. cinnamomea in order to improve the artificial culture codition and answer the different between mycelium and fruiting body.
Different fermentation states of A. cinnamomea (liquid cultured mycelium B506 and wild-type fruiting bodies) were analyzed with 2 dimentional polyacrylamide gel electrophoresis and found 606 and 514 protein spots in mycelium and fruiting body respectively. Although no protein spots were associated with terpenoid synthesis, several proteins involved in metabolism, cell rescue and ROS scavenging, cell structure and regulator specify expressed in fruiting body. To establish the basic genetic information of A. cinnamomea, monokaryotic mycelium S28 was sequenced with next-generation sequencing technique (NGS). A predicted 45.58 Mb genome size with 32× sequencing coverage and 1,242 scaffolds with total length 27,717,145 bp contain 6,522 predicted genes was completed. Liquid cultured mycelium B479 and wild-type fruiting body’s transcriptome were also sequenced with NGS. 19,875,544 and 25,296,502 clean reads were obtained from mycelium and fruiting body respectively. De novo assembly generate 13,109 unigenes with average length 1,615 bp, N50 = 2,770 bp and total length is 21,174,312 bp. 7,851 out of 13,109 unigenes with gene annotation against to NCBI nr database. After differential expressed genes (DEGs) analysis, 2,282 genes are assigned to have differential expressed among mycelium and fruiting body. Liquid cultured mycelium WSY-01 and wild-type fruiting body were used to construct the small RNA library with NGS. 10,879,926 and 18,291,833 clean reads were obtained from mycelium and fruiting body respectively. Using a previously constructed pipeline to search for microRNAs (miRNAs), then identified 4 predicted conserved miRNA and 63 novel predicted miRNA-like small RNA (milRNAs) candidates with most abundant in 23 nt and prefer 5′ uracil. Target prediction revealed several proteins involved in triterpenoid synthesis, mating type recognition, chemical or physical sensory protein and transporters predicted to be regulated by the miRNAs and milRNAs. An oxidosqualene cyclase (AcOSC) involved in triterpenoid compound synthesis pathway was identified. The lanosterol synthase function was characterized with heterologous protein expression system in a functional deficient yeast and GC/MS analysis. Agrobacteium-mediated transformation was used to generate the overexpression of AcOSC in A. cinnamomea artificial culture system. LC-MS/MS, HPLC and NMR were also used to identified the triterpenoid compound dehydrosulphurenic acid (DSA) and dehydroeburicoic acid (DEA) in transformed lines (called ACT) and found generate more DSA and DEA than un-transformed mycelium. 12 predicted terpene synthase genes were screened out from A. cinnamomea transcriptome library. After recombinant protein expression with Escherichia coli BL21 (DE3) and functional characterization with GC/MS. 7 recombinant proteins named with AcTPS had terpene synthase activity and generate one to multi products. With SPME absorption GC/MS analysis, several terpenoid compounds were identified in mycelium and fruiting body and correlated to AcTPS’s products and also found several un-identified terpenoid compounds. According to this, the AcTPS sequences are mapping back to the genomic sequence of A. cinnamomea isolate S28 to identify the gene clusters. Several unknown terpene synthases or modification enzymes may be involved in terpene synthesis pathway. At last, the transcriptome data was used to design a custom micro-array chip to analyze gene expression at different developmental stages of A. cinnamomea, including liquid cultured mycelium (AL), mycelium before transform to fruiting body on agar plate (EAP), fruiting body on agar plate (AF), wild-type fruiting body (AT). The microarray data was analyzed with normalization, ANOVA analysis, fold-change filtering and correlation calculation to create a putative genetic relation network. Several important genes such as: acetyl-CoA acetyltransferase, HMG-CoA reductase, diphosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, AcTPS3, AcTPS5, cytochrome p450 and AcCYP51 are involved in the genetic network. There also several regulatory factors such as: transcription factor PacC, transcription factor IIIC, TFIIH basal transcription factor, transcription initiation factor IIF, C2H2 transcription factor, transcription factor Gf. BMR1 and jumonji superfamily are involved. Although several terpene related genes and transcription factors are predicted to involved in the genetic network, further experiments are needed. This thesis provides several genetic information of A. cinnamomea for the basis of further secondary metabolites and fungal differentiation research. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:35:21Z (GMT). No. of bitstreams: 1 ntu-104-D97625002-1.pdf: 16564482 bytes, checksum: 06afb130ef806a601baaf2e62b06a210 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘 要 i
Abstract iv 目 錄 vii 圖目次 x 表目次 xiii 前 言 1 1. 文獻回顧 3 1.1 牛樟芝之型態與培養 3 1.2 牛樟芝生物活性成分 4 1.3 萜類生合成途徑 10 1.4 次世代定序 (Next-generation sequencing,NGS) 12 1.4.1 次世代定序基本原理與實驗流程 12 1.4.2 次世代定序在真菌上的研究 16 1.5 微核糖核酸(MicroRNA) 18 1.5.1 微核糖核酸生合成途徑 18 1.5.2 微核糖核酸之調控功能 19 1.6 擔子菌類轉基因系統 21 2. 材料與方法 23 2.1 牛樟芝菌株與培養繁殖 23 2.2 牛樟芝Genomic DNA,total RNA及small RNA之萃取 23 2.3 蛋白質體分析(Proteomic analysis) 24 2.3.1 總量蛋白質萃取 24 2.3.2 蛋白質二維膠體電泳分析(two-dimensional polyacrylamide gel electrophoresis,2D-PAGE) 25 2.3.3 蛋白質膠體純化與trypsin處理 25 2.3.4 蛋白質鑑定 25 2.3.5 Reverse transcriptase polymerase chain reaction (RT-PCR)分析 25 2.4 次世代定序 26 2.4.1 Genomic DNA library 26 2.4.2 Transcriptome library 27 2.4.3 Small RNA (sRNA) library 27 2.5 生物資訊分析 28 2.5.1 資料前處理 28 2.5.2 Genomic DNA序列組裝 28 2.5.3 Genomic DNA之組成分析 28 2.5.4 轉錄體基因資料庫之序列組裝 29 2.5.5 微核糖核酸序列分析與預測 29 2.5.6 同位素標定北方墨點法(Isotope labeled Northern blot) 30 2.5.7 微核糖核酸目標基因之預測 31 2.6 基因註解 31 2.6.1 Non-redundant protein sequence (nr)資料庫比對 31 2.6.2 Gene ontology (GO)比對 31 2.6.3 Cluster of orthologous groups of proteins (COG)比對 32 2.6.4 KEGG pathway比對 32 2.7 比較牛樟芝不同發育時期基因表現狀況 32 2.7.1 Differential expressed genes (DEGs) 32 2.7.2 DNA微矩陣列實驗(DNA micro-array) 33 2.7.3 基因相互關係網絡圖(Network)之建立 33 2.8 特定基因之cDNA選殖 34 2.8.1 自建資料庫BLAST比對 34 2.8.2 目標基因的釣取與全長的選殖 34 2.8.3 親緣關係演化分析 34 2.8.4 蛋白質保守性功能區塊分析比對 35 2.8.5 Three-dimensional (3D)蛋白質結構預測 35 2.9 蛋白質表現與反應條件 35 2.9.1 原核表現系統-大腸桿菌(Escherichia coli) 35 2.9.2 真核表現系統-酵母菌(Saccharomyces cerevisiae) 36 2.9.3 Oxidosqualene cyclase蛋白質反應條件 37 2.9.4 單、倍半萜生合成酵素之蛋白質反應 38 2.10 牛樟芝基因轉殖系統之建立 38 2.10.1 轉基因載體之建構 38 2.10.2 農桿菌感染法(Agrobacterium-mediated gene transformation) 39 2.11 牛樟芝代謝體學的分析 40 2.11.1 SPME頂空萃取GC/MS分析 40 2.11.2 High performance liquid chromatography (HPLC) 40 2.11.3 LC-MS/MS分析 41 2.11.4主成分分析(Principal components analysis) 42 2.11.5 NMR (Nuclear magnetic resonance spectroscopy) 42 3. 結果與討論 43 3.1 牛樟芝蛋白質體學分析 43 3.1.1 二維膠體電泳分析 43 3.1.2 蛋白質鑑定與功能探討 43 3.2 次世代定序與生物資訊分析 48 3.2.1 Genomic DNA建庫及定序 48 3.2.2 Genomic DNA序列組裝 48 3.2.3 Genomic DNA結構及組成分析 50 3.2.4 Genomic DNA序列基因註解 52 3.2.5 轉錄體建庫及定序 54 3.2.6 轉錄體基因資料庫基因註解 55 3.2.7 差異性表現基因(Differential expressed genes,DEGs) 57 3.2.8 sRNA library建庫與定序 62 3.2.9 miRNA與milRNA的預測 64 3.2.10 miRNA與milRNA的目標基因預測 74 3.3 三萜生合成酵素功能鑑定、分析與轉基因應用 77 3.3.1 2,3-Oxidosqualene cyclase (OSC)基因之選殖 77 3.3.2 利用酵母菌異源蛋白表現系統進行AcOSC功能之鑑定 80 3.3.3 利用農桿菌感染法將AcOSC轉入牛樟芝進行過表現 82 3.3.4 牛樟芝代謝體學分析 84 3.4 牛樟芝單萜與倍半萜類生合成酵素功能鑑定與分析 92 3.4.1 牛樟芝子實體與菌絲體所具有之萜類 92 3.4.2 牛樟芝萜類生合成基因之選殖 94 3.4.3 萜類合成酵素的功能鑑定 96 3.4.4 牛樟芝液態培養與AcTPS基因表現時間序列分析 114 3.4.5 AcTPS在牛樟芝染色體序列上之排序與相鄰基因 116 3.5 建立牛樟芝萜類代謝相關基因網絡 118 3.5.1 微矩陣列實驗(Microarray) 118 3.5.2 相關係數之計算與基因網絡之建立 121 4. 結論 130 5. 參考文獻 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牛樟芝 | zh_TW |
| dc.subject | ?類 | zh_TW |
| dc.subject | 生合成 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 子實體 | zh_TW |
| dc.subject | 菌絲體 | zh_TW |
| dc.subject | mycelium | en |
| dc.subject | Antrodia cinnamomea | en |
| dc.subject | terpenoids | en |
| dc.subject | biosynthesis | en |
| dc.subject | next-generation sequencing (NGS) | en |
| dc.subject | fruiting body | en |
| dc.title | 牛樟芝萜類化合物生合成之系統生物學研究 | zh_TW |
| dc.title | Systems Biology Research on Terpenoids Biosynthesis in Antrodia cinnamomea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何政坤,徐麗芬,張淑華,王升陽,孫英玄 | |
| dc.subject.keyword | 牛樟芝,?類,生合成,次世代定序,子實體,菌絲體, | zh_TW |
| dc.subject.keyword | Antrodia cinnamomea,terpenoids,biosynthesis,next-generation sequencing (NGS),fruiting body,mycelium, | en |
| dc.relation.page | 144 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 16.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
