請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52895
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李枝宏(Ju-Hong Lee) | |
dc.contributor.author | Ching-Wei Liao | en |
dc.contributor.author | 廖敬瑋 | zh_TW |
dc.date.accessioned | 2021-06-15T16:32:48Z | - |
dc.date.available | 2015-08-26 | |
dc.date.copyright | 2015-08-26 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-12 | |
dc.identifier.citation | [1] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing, Hoboken, NJ, USA: Wiley, 2002.
[2] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, New York: Wiley, 1 Dec. 1980. [3] O. L. Frost III, 'An algorithm for linearly constrained adaptive array processing,' Proceedings of the IEEE, vol. 60, no. 8, pp. 926 -935, Aug. 1972. [4] R.T. Compton, Jr., Adaptive Antennas: Concepts and Performance, Englewood Cliffs, New Jersey: Prentice Hall, 1988. [5] Y. Gu and A. Leshem, 'Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation,' IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3881 - 3885, Apr. 2012. [6] T. J. Shan and T. Kailath, 'Adaptive beamforming for coherent signals and interference,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 3, pp. 527-536, June 1985. [7] J. Dai, X. Bao, N. Hu, C. Chang ans W. Xu, 'A Recursive RARE Algorithm for DOA Estimation With Unknown Mutual Coupling,' IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1593 - 1596, 14 Aug. 2014. [8] Y. Lee and W.-R. Wu, 'A robust adaptive generalized sidelobe canceller with decision feedback,' IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3822 - 3832, Nov. 2005. [9] W. Zhou, D. Zhang, Y. Lin and Z. Zhou, 'An Improved Scheme to Suppress Coherent Interference in LCMV Adaptive Array,' in Proc. International Conference on Communications, Circuits and Systems Proceedings, vol. 2, Guilin, China, 25-28 June 2006, pp. 988 - 992. [10] J. E. Hudson, adaptive Array Principles, New York: Peter Peregrinus Ltd , 1981. [11] J. Capon, 'High-resolution frequency-wavenumber spectrum analysis,' Proceedings of the IEEE, vol. 57, no. 8, pp. 1408 -1418, Aug. 1969. [12] I. J. Gupta and A. A. Ksienski, 'Effect of mutual coupling on the performance of adaptive arrays,' IEEE Transactions on Antennas and Propagation, vol. 31, no. 5, pp. 785 -791, Sep. 1983. [13] S. Durrani and M. E. Bialkowski, 'Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems,' IEEE Transactions on Antennas and Propagation, vol. 52, no. 4, pp. 1130 -1134, Apr. 2004. [14] S. Valaee, B. Champagne and P. Kabal, 'Parametric localization of distributed sources,' IEEE Transactions on Signal Processing, vol. 43, no. 9, pp. 2144-2153, Sep. 1995. [15] J. Goldberg and H. Messer, 'Inherent limitations in the localization of a coherently scattered source,' IEEE Transactions on Signal Processing, vol. 46, no. 12, pp. 3441-3444, Dec. 1998. [16] S.Shahbazpanahi, S.Valaee and A.B.Gershman, 'A covariance fitting approach to parametric localization of multiple incoherently distributed sources,' IEEE Transactions on Signal Processing, vol. 3, pp. 592-600, Mar. 2004. [17] S. A. Vorobyov, A. B. Gershman and Z.-Q. Luo, 'Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem,' IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 313-324, Feb. 2003. [18] S. Shahbazpanahi, A. B. Gershman, Z. Q. Luo, and K. M. Wong, 'Robust adaptive beamforming for general-rank signal models,' IEEE Transactions on Signal Processing, vol. 51, no. 9, pp. 2257-2269, Sep. 2003. [19] J. Ringelstein, A. B. Gershman, and J. F. Böhme, 'Direction finding in random inhomogeneous media in the presence of multiplicative noise,' IEEE Signal Processing Letters, vol. 7, no. 10, pp. 269-272, Oct. 2000. [20] S. A. Vorobyov, 'Principles of minimum variance robust adaptive beamforming design,' Signal Processing, vol. 93, no. 12, pp. 3264 -3277, Dec, 2013, Available: http://dx.doi.org/10.1016/j.sigpro.2012.10.021. [21] J. Li, P. Stoica, and Z. Wang, 'On robust Capon beamforming and diagonal loading,' IEEE Transactions on Signal Processing, vol. 51, no. 7, pp. 1702-1715, Jul. 2003. [22] L. Chang and C. C. Yeh, 'Performance of DMI and eigenspace-based beamformers,' IEEE Transactions on Antennas and Propagation, vol. 40, no. 11, pp. 1336-1347, Nov. 1992. [23] L. Chang and C. C. Yeh, 'Effect of pointing errors on the performance of the projection beamformer,' IEEE Transactions on Antennas and Propagation, vol. 41, no. 8, pp. 1045 -1056, Aug. 1993. [24] H. Akaike, 'Information theory and an extension of the maximum likelihood principle,' in Proc. Second International Symposium on Information Theory, 1973, pp. 267 - 281. [25] J. Rissanen, 'Modeling by the shortest data description,' Automatica, vol. 14, pp. 465 - 471, 1978. [26] C. C. Huang and J. H. Lee, 'Robust Adaptive Beamforming Using a Fully Data-Dependent Loading Technique,' Progress In Electromagnetics Research B, vol. 37, pp. 307-325, Feb. 2012. [27] H. Cox, R. M. Zeskind and M. M. Owen, 'Robust adaptive beamforming,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 35, no. 10, pp. 1365-1376, Oct. 1987. [28] K. Takao and N. Kikuma, 'An adaptive array utilizing an adaptive spatial averaging technique for multipath environments,' IEEE Transactions on Antennas and Propagation, vol. 35, no. 12, pp. 1389 -1396, Dec. 1987. [29] T.-J. Shan, M. Wax and T. Kailath, 'On spatial smoothing for direction-of-arrival estimation of coherent signals,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 4, pp. 806-811, Aug. 1985. [30] S. U. Pillai and B. H. Kwon, 'Forward/backward spatial smoothing techniques for coherent signal identification,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 1, pp. 8-15, Jan. 1989. [31] R. O. Schmidt, 'Multiple emitter location and signal parameter estimation,' IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, Mar. 1986. [32] R. Roy and T. Kailath, 'ESPRIT-estimation of signal parameters via rotational invariance techniques,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 7, pp. 984-995, Jul. 1989. [33] M. Lin and L. Yang, 'Blind Calibration and DOA Estimation With Uniform Circular Arrays in the Presence of Mutual Coupling,' IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 315-318, Dec. 2006. [34] M. Wax and T. Kailath, 'Detection of signals by information theoretic criteria,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 2, pp. 387-392, Apr. 1985. [35] J. Li, P. Stoica and Z. Wang, 'Doubly Constrained Robust Capon Beamformer,' IEEE Transactions on Signal Processing, vol. 52, no. 9, pp. 2407 - 2423, Sep. 2004. [36] R. G. Lorenz and S. P. Boyd, 'Robust minimum variance beamforming,' IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1684-1696, May 2005. [37] A. Beck and Y. C. Eldar, 'Doubly Constrained Robust Capon Beamformer With Ellipsoidal Uncertainty Sets,' IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 753-758, Jan. 2007. [38] J. Liu, A. B. Gershman, Z. Q. Luo, and K. M. Wong, 'Adaptive beamforming with sidelobe control: A second-order cone programming approach,' IEEE Signal Processing Letters, vol. 10, no. 11, pp. 331-334, Nov. 2003. [39] C. C. Gaudes , I. Santamaria , J. Via , E. M. M. Gomez and T. S. Paules, 'Robust Array Beamforming With Sidelobe Control Using Support Vector Machines,' IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 574 -584, Feb. 2007. [40] A. Hassanien, S. A. Vorobyov and K. M. Wong, 'Robust Adaptive Beamforming Using Sequential Quadratic Programming: An Iterative Solution to the Mismatch Problem,' IEEE Signal Processing Letters, vol. 15, pp. 733-736, Nov. 2008. [41] A. Khabbazibasmenj, S.A. Vorobyov and A. Hassanien, 'Robust adaptive beamforming based on steering vector estimation with as little as possible prior information,' IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 2974 - 2987, Feb. 2012. [42] L. Du, J. Li and P. Stoica, 'Fully Automatic Computation of Diagonal Loading Levels for Robust Adaptive Beamforming,' IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 449-458, Jan. 2010. [43] J. Yang, X. Ma, C. Hou, and Y. Liu, 'Automatic generalized loading for robust adaptive beamforming,' IEEE Signal Processing Letters, vol. 16, no. 3, pp. 219-222, Mar. 2009. [44] L. Ehrenberg, S. Gannot, A. Leshem, and E. Zehavi, 'Sensitivity analysis of MVDR and MPDR beamformers,' in Proc. IEEE 26th Convention of Electrical and Electronics Engineers in Israel, Eliat, Israel, 17-20 Nov. 2010. [45] L. J. Griffiths and C.W. Jim, 'An alternative approach to linearly constrained adaptive beamforming,' IEEE Transactions on Antennas and Propagation, vol. 30, no. 1, pp. 27-34, Jan. 1982. [46] L. Landau, R.C. de Lamare, and M. Haardt, 'Robust adaptive beamforming algorithms using low-complexity mismatch estimation,' in Proc. IEEE Statistical Signal Processing Workshop (SSP), Nice, France, 28-30 June 2011, pp. 445 - 448. [47] B. R. Breed and J. Strauss, 'A short proof of the equivalence of LCMV and GSC beamforming,' IEEE Signal Processing Letters, vol. 9, no. 6, pp. 168 -169, June 2002. [48] J. K. Thomas, L. L. Scharf and D. W. Tufts, 'The probability of a subspace swap in the SVD,' IEEE Transactions on Signal Processing, vol. 43, no. 3, pp. 730-736, Mar. 1995. [49] A. Khabbazibasmenj, S. A. Vorobyov and A. Hassanien, 'Robust adaptive beamforming via estimating steering vector based on semidefinite relaxation,' in Proc. 44th Annu. Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, Canada, 7-10 Nov. 2010, pp. 1102 - 1106. [50] R. Badeau, B. David and G. Richard, 'Fast approximated power iteration subspace tracking,' IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2931-2941, Aug. 2005. [51] P. S. Chang and A. N.Willson, 'Analysis of conjugate gradient algorithms for adaptive filtering,' IEEE Transactions on Signal Processing, vol. 48, no. 2, pp. 409-418, Feb. 2000. [52] S. Haykin, Adaptive Filter Theory, 3-rd ed, Englewood Cliffs, NJ, USA: Prentice-Hall, 1996. [53] A. B. Gershman ans V. T. Ermolaev, 'Optimal subarray size for spatial smoothing,' IEEE Signal Processing Letters, vol. 2, no. 2, pp. 28 -30, Feb. 1995. [54] P.D. Anderson and M.A. Ingram, 'The performance of the least mean squares algorithm combined with spatial smoothing,' IEEE Transactions on Signal Processing, vol. 45, no. 4, pp. 1005-1012, Apr. 1997. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52895 | - |
dc.description.abstract | LCMV (Linearly Constrained Minimum Variance)波束成型器是天線信號處理領域相當重要和基礎的技術之一,主要是利用最小化輸出功率並且限制欲接收信號指引向量的增益來做權重運算,因此具有很強的消除干擾信號能力。而廣義旁瓣消除器(Generalized Sidelobe Canceller ,GSC)是由LCMV波束成型器演變而來,兩者擁有相同的權重向量,但是GSC只需要較低的運算量即可達成,更利於現實中使用。
但是當假設的指引向量發生誤差時,會產生信號抵銷現象,使系統效能嚴重衰落。因此我們提出一個由GSC發展而來的MGSC,運用了不同的阻隔矩陣,可以有效的減小信號抵銷現象發生的可能,增加系統的強健性。因為使用了這個阻隔矩陣,使可適性權重向量的維度減小,進而減少所需的運算量。我們也同時也使MGSC擁有估計欲接收信號指引向量的能力,只需要付出較小的運算量即可。接著我們提出將現有的強健性演算法運用至MGSC架構上的做法,不僅使這些強健性演算法計算複雜度降低,還能提升效能。最後我們將MGSC與空間平均法(Spatial Smoothing Technique)結合,使之能同時對抗同調環境以及指引向量誤差等非理想效應。 | zh_TW |
dc.description.abstract | LCMV (Linearly Constrained Minimum Variance) beamformer is one of the important and basic techniques in the antenna array signal processing. It aims to find the optimal solution for the weight vector by maintaining the desired array response while minimizing the array output power. Thus, the beamformer has a great ability to suppress interference and noise. The GSC (Generalized Sidelobe Canceller) derived from LCMV beamformer provides a simple way for implementing and makes the implementation of the LCMV much more efficient.
However, the performance of the aforementioned beamformers is known to be degraded dramatically in the presence of steering vector error because of the signal cancellation phenomenon which leads the desired signal to be suppressed as interference. To improve the robustness, we propose a method called MGSC (modified GSC) evolved from the GSC. The MGSC uses a novel block matrix which can not only avoids the signal cancellation phenomenon but also decreases the computational complexity by diminishing the size of the adaptive weight vector. We also give the MGSC an ability to estimate steering vector and it only needs few computations. Then, we propose a way to make the MGSC combined with the existing algorithms. It can also improve the performance and decrease the computational complexity at the same time. Finally, we combine spatial smoothing technique with the MGSC to against coherent interference and steering vector error simultaneously. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:32:48Z (GMT). No. of bitstreams: 1 ntu-104-R02942112-1.pdf: 9664518 bytes, checksum: 053b4fa395dce19179a4289755ca231e (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文貢獻 3 1.4 論文架構 4 第2章 天線陣列信號處理之數學基礎與基本概念 6 2.1 天線陣列基本架構及數學模型 6 2.1.1 一維均勻線性天線陣列(Uniform Linear Array, ULA) 6 2.1.2 自相關矩陣特性 7 2.1.3 自相關矩陣的特徵分解 8 2.2 可適性波束成型技術 10 2.3 線性限制最小輸出功率波束成型器(Linearly Constrained Minimum Variance beamformer , LCMV) 11 2.4 同調環境的信號抵銷現象 12 2.5 交互耦合現象(Mutual coupling effect) 14 2.6 Local scattering effect 16 2.6.1 Coherent Local Scattering 16 2.6.2 Incoherent Local Scattering 17 2.7 Wavefront distortion 17 第3章 已提出的演算法 20 3.1 對抗非理想環境之強健性演算法 20 3.1.1 對角載入方法(Diagonal loading method) 21 3.1.2 Eigenspace-based (ESB) beamformer 21 3.1.3 Fully Data-Dependent Loading Technique 23 3.1.4 空間平均法(Spatial Smoothing technique, SS) 25 3.2 估計信號入射角度之演算法 27 3.2.1 Multiple Signal Classification (MUSIC) 27 3.2.2 Recursive Rank-reduction(R-RARE) Method 28 3.3 估計入射信號數目之演算法 30 第4章 Robust Beamforming Based on Covariance Matrix Reconstruction 32 4.1 Introduction 32 4.2 ICMR-SVE 34 4.2.1 重建干擾加雜訊矩陣(ICMR) 34 4.2.2 指引向量估計(SVE) 34 4.3 Proposed Method 35 4.3.1 估計指引向量 36 4.3.2 估計指引向量配合MUSIC演算法 37 4.3.3 自相關矩陣重建方法 38 4.3.4 自相關矩陣重建之改進 39 4.4 Proposed Method with Multiple-Beam Constraints 41 4.5 Proposed Method under Coherent Environments 42 4.5.1 解決同調問題波束成型技術 42 4.5.2 Proposed Method 43 4.6 Proposed Method under Mutual Coupling Environments 47 4.7 Simulation 51 4.8 結論 68 第5章 Robust Adaptive Beamforming Using Modified Generalized Sidelobe Canceller (MGSC) 69 5.1 Introduction 69 5.2 Background 70 5.2.1 Signal model 70 5.2.2 Generalized Sidelobe Canceller (GSC) 72 5.2.3 Eigenspace-based (ESB) beamformer 74 5.3 Proposed Modified GSC (MGSC) 75 5.4 Performance Analysis 80 5.5 Applications of MGSC 84 5.5.1 ESB-MGSC 84 5.5.2 RCMV-MGSC 85 5.6 Simulation 88 5.7 Conclusion 107 Appendix 108 第6章 LMS-based Algorithm Combined with MGSC 109 6.1 Introduction 109 6.2 LMS Algorithm 110 6.3 Decision Feedback GSC (DF-GSC) 111 6.4 Proposed Method 114 6.4.1 LMS Algorithm Combined with MGSC:Proposed Method 1 114 6.4.2 Decision Feedback Device Combined with MGSC: Proposed Method 2 115 6.5 Computational Complexity Comparison 117 6.6 Simulation 118 6.7 Conclusion 131 第7章 Full Array Spatial Smoothing Technique Using MGSC under Coherent and Steering Vector Error Environments 132 7.1 Introduction 132 7.2 Full Array Spatial Smoothing(FASS) Technique 133 7.3 Proposed Method 136 7.3.1 SS-MGSC 136 7.3.2 FASS-MGSC 139 7.4 Simulation 145 7.5 Conclusion 159 第8章 LMS-based FASS Technique based on MGSC under Coherent and Steering Vector Error Environments 160 8.1 Introduction 160 8.2 LMS algorithm combined with spatial smoothing 161 8.3 Proposed Method 162 8.3.1 SS-MGSC Using LMS Algorithm 162 8.3.2 FASS-MGSC Using LMS Algorithm 163 8.3.3 SS-DFMGSC 164 8.3.4 FASS-DFMGSC 165 8.4 Simulation 166 8.5 Conclusion 181 第9章 總結與未來研究方向 182 Reference 184 | |
dc.language.iso | zh-TW | |
dc.title | 在非理想環境下使用改良式廣義旁瓣消除器之強健式可適性波束成型技術 | zh_TW |
dc.title | Robust Adaptive Beamforming Using Modified Generalized Sidelobe Canceller Under Non-ideal Environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 方文賢,陳巽璋,劉玉蓀 | |
dc.subject.keyword | 強健式可適性波束成型,指引向量估計,廣義旁瓣消除器,信號抵銷現象,指引向量誤差,同調環境, | zh_TW |
dc.subject.keyword | robust adaptive beamforming,steering vector estimation,generalized sidelobe canceller,signal cancellation phenomenon,steering vector error,coherent environment, | en |
dc.relation.page | 190 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。