Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭茂坤
dc.contributor.authorHsin-Yu Wuen
dc.contributor.author巫信佑zh_TW
dc.date.accessioned2021-06-15T16:32:43Z-
dc.date.available2015-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation[1] A. Swami, M. R. Reagan, P. Basto, Y. Mishima, N. Kamaly, S. Glavey, et al., “Engineered nanomedicine for myeloma and bone microenvironment targeting,” Proceedings of the National Academy of Sciences, 111, No. 28, 10287-10292, 2014.
[2] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society, 128, No. 6, 2115-2120, 2006.
[3] K. L. Kelly, A. A. Lazarides, and G. C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” Computing in Science & Engineering, 3, No. 4, 67-73, 2001.
[4] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?,” Journal of the American Chemical Society, 122, No. 19, 4640-4650, 2000.
[5] S.-J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science, 295, No. 5559, 1503-1506, 2002.
[6] K. C. Black, Y. Wang, H. P. Luehmann, X. Cai, W. Xing, B. Pang, et al., “Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution,” ACS nano, 8, No. 5, 4385-4394, 2014.
[7] C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano letters, 5, No. 4, 709-711, 2005.
[8] B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology, 17, No. 20, 5167, 2006.
[9] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” The Journal of Physical Chemistry B, 103, No. 19, 3854-3863, 1999.
[10] R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, 318, No. 1, 131-136, 2000.
[11] T. Silva and S. Schultz, “A scanning near‐field optical microscope for the imaging of magnetic domains in reflection,” Review of scientific instruments, 67, No. 3, 715-725, 1996.
[12] E. Dujardin, L.-B. Hsin, C. C. Wang, and S. Mann, “DNA-driven self-assembly of gold nanorods,” Chemical Communications, 14, 1264-1265, 2001.
[13] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Physical review letters, 83, No. 21, 4357, 1999.
[14] J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” The Journal of Chemical Physics, 116, No. 15, 6755-6759, 2002.
[15] S. S. Chang, and C. R. C. Wang, “The synthesis and absorption spectra of several metal nanoparticle systems,” Chem. 56, 209-222, 1998.
[16] R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4, No. 21, 396-402, 1902.
[17] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” JOSA, 31, No. 3, 213-222, 1941.
[18] R. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review, 106, No. 5, 874, 1957.
[19] K. H. Drexhage, “Influence of a dieletric interface on fluorescence decay time,” J. Luminesc. 1, 693-701, 1970
[20] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, 424, No. 6950, 824-830, 2003.
[21] C. Hafner, “Beitrage zur Berechnung der Ausbreitung electromagneitscher Wellen in Zylindrischen Sreuckturen mit Hilfe des point-matching Ver fahrens,” Ph.D. dissertation Swiss Polytechnical Institute of Technology, Zurich, Switzerland, 1980.
[22] E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,” JOSA A, 19, No. 1, 101-111, 2002.
[23] S. Kruszewski, T. Wybranowski, M. Cyrankiewicz, B. Ziomkowska, and A. Pawlaczyk, “Enhancement of FITC fluorescence by silver colloids and silver island films,” Acta Physica Polonica Series A, 113, No. 6, 1599, 2008.
[24] K. Aslan, S. N. Malyn, and C. D. Geddes, “Angular-dependent metal-enhanced fluorescence from silver island films,” Chemical physics letters, 453, No. 4, 222-228, 2008.
[25] Y. Zhang, L. N. Mandeng, N. Bondre, A. Dragan, and C. D. Geddes, “Metal-Enhanced Fluorescence from Silver− SiO2− Silver Nanoburger Structures,” Langmuir, 26, No. 14, 12371-12376, 2010.
[26] Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir, 29, No. 8, 2731-2738, 2013.
[27] S. Mühlig, D. Cialla, A. Cunningham, A. März, K. Weber, T. Bürgi, et al., “Stacked and Tunable Large-Scale Plasmonic Nanoparticle Arrays for Surface-Enhanced Raman Spectroscopy,” The Journal of Physical Chemistry C, 118, No. 19, 10230-10237, 2014.
[28] E. Jang, K. J. Son, and W.-G. Koh, “Metal-enhanced fluorescence using silver nanoparticles-embedded polyelectrolyte multilayer films for microarray-based immunoassays,” Colloid and Polymer Science, 292, No. 6, 1355-1364, 2014.
[29] Q. Cui, F. He, L. Li, and H. Möhwald, “Controllable metal-enhanced fluorescence in organized films and colloidal system,” Advances in colloid and interface science, 207, 164-177, 2014.
[30] 黃楚荃,'銀島膜之表面螢光增益分析',國立台灣大學應用力學研究所碩士論文,2014
[31] D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall, New Jersey, 1996
[32] U. Kreibig and M. Vollmer, “Optical Properties of Metal Cluster,” Sprin. Mater. Sci. 25, Springer Verlag, Berlin, 1995.
[33] J. H. Weaver, and H. P. R. Frederikse, Optical Properties of Selected Elements, McGraw Hill, New York
[34] P. B. Johnson and R. W. Christy, “Optical Constants of the Nobel Metals,” Phy. Rev. B 6, 4370-79 (1972)
[35] C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small Particles, Wuley, New York, 1983
[36] J. A. Stratton, Electromagnetic Theory, McGraw Hill, New York, 1941.
[37] W.W. Bell, Special Functions for Scientists and Engineers, D. van Nostrand Comp. Ltd., 1968.
[38] N. Kuster, and R. Ballisti, “MMP method simulation of antenna with scattering object in the closer-near field,” IEEE. Trans. Magn. 26. 658-661, 1990.
[39] C. Hafner, and N. Kuster, “Computation of electromagnetic fields by multiple multipole method (generalized multipole technique),” Radio. Sci. 26, 291-297, 1991.
[40] C. Hafner, The Generalized Multipole Technique for Computational Electromaga¬netics, Artech. House, Boston, 1991.
[41] I. N. Vekua, New Methods for Solving Elliptic Equations, North-Holland, New York, 1993.
[42] F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer. 79, 775-824, 2003.
[43] H. William, A. T. Saul, T. V. William and F. P. Brian, Numerical Recipes C++: the Art of Scientific Computing, Cambridge University Press, New York, 2002.
[44] P. Bharadwaj, P. Anger and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence, Nanotechnology 18, 044017, 2007.
[45] J.R. Gispert, Coordination Chemistry, Wiley-VCH, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52893-
dc.description.abstract本文研究銀島與銀球相互作用的金屬螢光增益,銀島與銀球結構的表面電漿子耦合使間隙區域的|E|提升。我們使用多重中心展開法(MMP)來分析位於間隙區域之螢光分子的螢光增益,其中銀島為為一扁橢球。本研究選擇螢光分子TRITC 和Texas red來做計算,定量分析具有不同的間隙、平面波的入射角度、銀島與銀球尺寸形狀的金屬螢光效應。
數值分析結果指出,混和奈米結構的間隙耦合使得金屬螢光增益的增強因子較單一銀島佳,間隙愈小增強因子愈強,並且發現與先前實驗結果一致,除此之外,發現縮短銀島與銀球的間隙可以提高金屬螢光增益;表面電漿子共振波長能帶會隨著銀島變扁或尺寸變大而紅位移或能帶變寬,此性質使我們可以為了特定的螢光分子選定銀島的尺寸,以便得到最大的激發率;最後,發現銀球會受到誘導光力而靠近銀島,使銀島與銀球之間隙減小而增強金屬螢光增益效應。
zh_TW
dc.description.abstractThe metal enhanced fluorescence (MEF) of a silver island (SI) associated with a silver nanoparticle (SNP) was studied in this thesis. The coupling plasmonic effect of the hybrid nanostructure can enhance the near field within the gap zone. We use the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule located in the gap zone, where the SI is modelled as an oblate spheroid. The fluorescent molecules used for simulation in this study are TRITC and Texas red. We quantitatively analyzed the MEF effects with different gaps, the incident angles of plane wave, and the sizes and shapes of SI and SNP.
Numerical results show that the enhancement factor of the hybrid nanostructure on MEF is higher than that of a SI alone due to the coupled gap mode; the smaller the gap the larger the enhancement factor. This finding is in agreement with the previous experimental results. In addition, reducing the distance between molecule and SNP can also raise MEF. The surface plasmon resonance (SPR) band of the SI is red-shifted and broadened by being flattened or enlarged. This property allows us to tailor the shape of SI for obtaining the maximum excitation rate on a specific molecule. Moreover, we found that the induced optical force allows SNP be attracted by SI to reduce the gap gradually for performing a stronger MEF effect
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:43Z (GMT). No. of bitstreams: 1
ntu-104-R02543054-1.pdf: 5115457 bytes, checksum: 8dcdb185d08bfb72742cc3dc31d85cfd (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 ix
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文內容 3
第2章 電磁理論 5
2.1 Maxwell方程式與邊界條件[32] 5
2.2 Helmholtz方程式[37] 7
2.3 球向量波函數[37] 8
2.4 平面波與電偶極之電場與磁場 10
2.5 Maxwell應力張量相關電磁問題 12
第3章 多重中心展開法(MMP)及螢光效應相關理論 15
3.1 多重中心展開法(MMP) 15
3.1.1 多重中心展開法計算空間中任意點之電磁場 16
3.1.2 奇異值拆解法求解MMP電磁場之待定係數 18
3.2 吸收截面積(ACS)效率、散射截面積(SCS)效率、消散截面積(ECS)效率與激發率 21
3.3 輻射功率、非輻射功率與量子效率 23
3.4 金屬螢光增益(MEF)與Stokes位移現象 24
第4章 數值結果與分析討論 28
4.1 螢光分子位置與振盪方向對激發率之影響 30
4.2 銀球與銀島間距對螢光增益之影響 35
4.3 波傳方向對螢光增益之影響 46
4.4 銀島幾何形狀對螢光增益之影響 58
4.5 銀球幾何形狀對螢光增益之影響 66
4.6 銀球所受之光力 74
第5章 研究總結與未來展望 77
5.1 研究結論 77
5.2 未來展望 78
附錄 展開中心擺放位置與波長之關係 79
參考文獻 91
dc.language.isozh-TW
dc.subject量子效率zh_TW
dc.subject增強因子zh_TW
dc.subject光力zh_TW
dc.subject激發率zh_TW
dc.subject多重中心展開法zh_TW
dc.subject銀球zh_TW
dc.subject銀島zh_TW
dc.subject金屬螢光增益zh_TW
dc.subject表面電漿子共振zh_TW
dc.subjectexcitation rateen
dc.subjectsilver islanden
dc.subjectsilver nanoparticleen
dc.subjectmultiple multipole (MMP) methoden
dc.subjectsurface plasmon resonance (SPR)en
dc.subjectgapen
dc.subjectmetal enhancement fluorescence(MEF)en
dc.subjectquantum yielden
dc.subjectenhancement factoren
dc.subjectoptical forceen
dc.title銀奈米粒子與銀島之近場耦合對金屬增強螢光效益之影響zh_TW
dc.titleNear-field coupling of silver nanoparticle and silver island on metal-enhanced fluorescenceen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor廖駿偉
dc.contributor.oralexamcommittee鄧崇任
dc.subject.keyword金屬螢光增益,銀島,銀球,多重中心展開法,表面電漿子共振,激發率,量子效率,增強因子,光力,zh_TW
dc.subject.keywordmetal enhancement fluorescence(MEF),silver island,silver nanoparticle,multiple multipole (MMP) method,surface plasmon resonance (SPR),gap,excitation rate,quantum yield,enhancement factor,optical force,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved