Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52882
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕蓓德(Pei-Te Chuieh)
dc.contributor.authorHsuan-Te Sungen
dc.contributor.author宋宣德zh_TW
dc.date.accessioned2021-06-15T16:32:11Z-
dc.date.available2020-08-16
dc.date.copyright2015-08-16
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation1. Acda, M.N. and Devera, E.E. (2014) Physico-Chemical Properties of Wood Pellets from Forest Residues. Journal of Tropical Forest Science 26(4), 589-595.
2. Antal, M.J., Mochidzuki, K. and Paredes, L.S. (2003) Flash carbonization of biomass. Industrial & Engineering Chemistry Research 42(16), 3690-3699.
3. Atienza-Martinez, M., Fonts, I., Abrego, J., Ceamanos, J. and Gea, G. (2013) Sewage sludge torrefaction in a fluidized bed reactor. Chemical Engineering Journal 222, 534-545.
4. Atienza-Martinez, M., Mastral, J.F., Abrego, J., Ceamanos, J. and Gea, G. (2015) Sewage Sludge Torrefaction in an Auger Reactor. Energy & Fuels 29(1), 160-170.
5. Barneto, A.G., Carmona, J.A., Ferrer, J.A.C. and Blanco, M.J.D. (2010) Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production. Fuel 89(2), 462-473.
6. Berman, P.C.A., Boersma, A.R., Zwart, R.W.R. and Kiel, J.H.A. (2005) Torrefaction for biomass co-firing in existing coal-fired power stations 'BIOCOAL'. Energy Research Centre of the Netherlands (ECN) report, ECN-C--05-013.
7. Chen, W.H. and Kuo, P.C. (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35(6), 2580-2586.
8. Ding, H.S. and Jiang, H. (2013) Self-heating co-pyrolysis of excessive activated sludge with waste biomass: Energy balance and sludge reduction. Bioresource Technology 133, 16-22.
9. Du, S.W., Chen, W.H. and Lucas, J.A. (2014) Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresource Technology 161, 333-339.
10. Huang, Y.F., Kuan, W.H., Lo, S.L. and Lin, C.F. (2008) Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource Technology 99(17), 8252-8258.
11. Huang, Y.F., Syu, F.S., Chiueh, P.T. and Lo, S.L. (2013) Life cycle assessment of biochar cofiring with coal. Bioresource Technology 131, 166-171.
12. ISO (2006) ISO 14040:2006, Environmental management-life cycle assassment principles and framework. Standardization. I.O.f. (ed).
13. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J. (2002) Microwave heating applications in enviromnental engineering - a review. Resources Conservation and Recycling 34(2), 75-90.
14. Kaliyan, N., Morey, R.V., Tiffany, D.G. and Lee, W.F. (2014) Life cycle assessment of a corn stover torrefaction plant integrated with a corn ethanol plant and a coal fired power plant. Biomass & Bioenergy 63, 92-100.
15. Lin, Y.S., Ma, X.Q., Yu, Z.S. and Cao, Y.W. (2014) Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge. Bioresource Technology 166, 444-450.
16. Masek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E. and Hurst, P. (2013) Microwave and slow pyrolysis biochar-Comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis 100, 41-48.
17. Miura, M., Kaga, H., Sakurai, A., Kakuchi, T. and Takahashi, K. (2004) Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis 71(1), 187-199.
18. Mohan, D., Pittman, C.U., Jr. and Steele, P.H. (2006) Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20(3), 848-889.
19. Na, B.I., Ahn, B.J. and Lee, J.W. (2015) Changes in chemical and physical properties of yellow poplar (Liriodendron tulipifera) during torrefaction. Wood Science and Technology 49(2), 257-272.
20. Qian, K., Kumar, A., Zhang, H., Bellmer, D. and Huhnke, R. (2015) Recent advances in utilization of biochar. Renewable & Sustainable Energy Reviews 42, 1055-1064.
21. Shuang-quan, Z., Xiao-ming, Y., Zhi-yuan, Y., Ting-ting, P., Ming-jian, D. and Tian-yu, S. (2009) Study of the co-pyrolysis behavior of sewage-sludge/rice-straw and the kinetics. Procedia Earth and Planetary Science 1(1), 661-666.
22. Trifonova, R., Babini, V., Postma, J., Ketelaars, J.J.M.H. and van Elsas, J.D. (2009) Colonization of torrefied grass fibers by plant-beneficial microorganisms. Applied Soil Ecology 41(1), 98-106.
23. Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A. and Ptasinski, K.J. (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass & Bioenergy 35(9), 3748-3762.
24. Wannapeera, J., Fungtammasan, B. and Worasuwannarak, N. (2011) Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92(1), 99-105
25. Worasuwannarak, N., Wannapeera, J. and Fungtammasan, B. (2011) Pyrolysis Behaviors of Woody Biomass Torrefied at Temperatures Below 300 °C. 2011 IEEE First Conference on Clean Energy and Technology, 287-290
26. Zhu, X.L., Chen, Z.H., Xiao, B., Hu, Z.Q., Hu, M.A., Liu, C.X. and Zhang, Q. (2015) Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. Journal of Thermal Analysis and Calorimetry 119(3), 2269-2279.
27. 台北市政府工務局衛生下水道工程處,迪化污水處理廠介紹,(2011)
http://www.sso.gov.taipei/ct.asp?xItem=3455242&ctNode=45005&mp=106041 (2015/4/8瀏覽查看)
28. 世界港口間測量距離(Searates.com)
http://www.searates.com/cn/reference/portdistance
(2015/7/6瀏覽查看)
29. 工業技術研究院,「生質能技術與應用」 (2010)
30. 工業技術研究院,「先導型焙燒與造粒系統技術應用與測試發展計畫」 (2013)
31. 內政部營建署,「污水下水道第五期建設計畫(104至109年度)核定本」 (2014)
32. 石峻豪,「微波共焙燒下水污泥與稻稈產製生質炭之研究」,碩士論文,國立台灣大學環境工程學研究所 (2013)
33. 台灣電力公司,「焙燒前處理生質物之展望」,台電工程月刊,765期(5月號) (2014)
34. 朱國瑞,「微波及微波應用」,科學發展,395期 (2005)
35. 吳志清,「中鋼運通公司35,000載重噸數散裝貨輪通裕倫簡介」 (2004)
36. 吳耿東,「焙燒生質物混燒應用」,2011生質廢棄物轉製再生燃料技術交流研討會 (2011)
37. 法務部,「再生能源發展條例」 (2009)
38. 陳威榮,「以微波誘發焙燒反應處理稻稈及狼尾草之研究」,碩士論文,國立台灣大學環境工程學研究所 (2011)
39. 黃于峰,「微波誘發裂解生質廢棄物之研究」,博士論文,國立台灣大學環境工程學研究所 (2008)
40. 黃國雄,「利用墾丁國家公園銀合歡製造木炭之研究」,國家公園學報2010年第20卷,第3期 (2010)
41. 楊順帆,「墾丁地區七年生更新造林林分與相鄰銀合歡林分地上部生物量及碳貯存量之比較」,碩士論文,國立屏東科技大學森林系 (2013)
42. 經濟部能源局,「我國運輸部門能源消費變動因素分析」,能源知識庫 (2011)
43. 經濟部能源局,「中華民國101年能源統計年報」 (2012)
44. 經濟部能源局,「中華民國103年能源統計手冊」 (2014)
45. 澎湖縣政府行政處新聞科,「銀合歡再利用議題 集思廣益」 (2012)
46. 鄭清元,「預先微波PAC對玻璃研磨廢水混凝處理影響之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系碩士班 (2007)
47. 鄭蓓馨,「微波誘發焙燒銀合歡廢材作為生質炭之研究」,碩士論文,國立台灣大學環境工程學研究所 (2014)
48. 墾丁國家公園管理處,「墾丁熱帶海岸林生態復舊研究及監測計畫」 (2009)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52882-
dc.description.abstract自十八世紀工業革命以來,人類活動大量開發化石燃料。然而,在化石燃料蘊藏有限之條件下,亦積極找尋其他替代方案作為能源使用。生質能被視為最具潛力之可再生能源,在避免與種植食用作物爭地的前提下,可經由常見廢棄物如農業廢棄物、畜牧廢棄物進行轉換生產。
本研究藉微波誘發焙燒進行反應,將污泥添加銀合歡製成混合材料,經熱化學轉換,提升產物特性,進而產製生質炭,作為替代燃料使用。以微波進行加熱反應,相較於傳統加熱,不僅能減少能源消耗,對於產物反應效率亦能大幅提升;焙燒反應為低溫碳化反應,可保有較高含量生質炭。固態產物分析項目包含熱重分析、重量產率、能量分析、熱值分析、近似分析等,分析產物性質變化,最後以生命週期評估,評估投入與產出之衝擊與效益。
實驗操作條件設定為30分鐘,微波功率應用於污泥及混合材料分別為100-400 W及100-350 W,污泥混合比例為25 %、50 %、75 %。結果顯示,經熱重分析儀測定污泥材料大量散失主要位於溫度200 °C至500 °C之間;重量產率中,污泥單獨焙燒整體隨功率升高,而呈現重量產率下降,微波功率升至250 W以後,污泥僅剩不到投入之一半,功率400 W重量產率為最低值20.48 wt. %。污泥添加銀合歡進行共焙燒反應中,於低功率100 W條件下,污泥混合比例從0 %提高至25 %及50 %時,可觀察重量產率呈現明顯直墜情形,表示污泥添加銀合歡共焙燒能提升整體裂解情形;熱值分析中,污泥除了功率100 W所產生之熱值些微高於原始污泥之外,其餘功率下熱值皆低於原材料污泥。污泥混合比例25 %中,於低功率100 W,熱值可與銀合歡產物相近,可表示低混合比與低功率下能保有產物之熱值表現。
污泥經焙燒後產物之近似分析中,功率250 W至400 W時,揮發分比例僅剩含量介於1.9-4.8 %,灰分比例提高至64.61-72.34 %,固定碳介於30.63- 25.74 %;元素分析中,污泥以Van Krevelan Diagram進行比較,當低揮發分煙煤與產物於功率300 W之H/C值較接近。污泥共焙燒於比例25 %與50 %中,分別以功率350 W及功率150 W較接近低揮發分煙煤之特性。生命週期評估部分,污泥焙燒主要成本投入在於污泥含水量(85 %)於烘箱乾燥單元,可高達292 kWh,表示污泥含水量對於污泥處理為一重要指標。污泥與銀合歡共焙燒可降低污泥乾燥投入成本,亦可保有產物含量較高之熱值。
zh_TW
dc.description.abstractDue to the demand for fossil fuels which have been mined intensityly since the industrial revolution in the eighteenth century. However, under the conditions of limited resources, alternative energy must be found. Biomass can be considered as a potential energy development via common wastes conversion, such as agricultural waste, and animal waste.
This study was carried out by microwave-induced torrefaction, which is a thermo-chemical convertion techmology to react mixed materials, including sludge and leucaena which acts an additive to improve product properties. The microwave heating reaction compared to conventional heating, not only reduces energy consumption but enhances the efficiency of the reaction. Torrefaction reaction is mild pyrolysis treatment which retains higher contents of biochar. Solid analysis items comprise of thermal gravimetric analysis, weight yield, energy analysis, calorific value analysis, approximate analysis, and LCA were used to analyze the impact and benefit of the input and output.
The microwave was set to operate for 30 minutes at 100 W to 400 W and 100 W to 350 W. The sludge mixing ratio used was 25 %, 50 %, and 75 %. The results showed that the sludge material measured by thermal gravimetric analysis (TGA) lost most of its weight at temperatures between 200 ° C to 500 ° C. As power increased, mass decreased. After the microwave power rose to 250 W, the remaining sludge was less than half of the raw material, and as low as 20.48 wt. % at 400 W. When the microwave power was at 100 W, the sludge mixing ratio increased from 0 % to 25 % and to 50 %, showing a strongly decreased, indicate that sludge co-torrefaction can improve the overall situation. In addition to the calorific value of the sludge produced is greater than the raw sludge at 100 W, remaining power options is less than raw materials. When the material of sludge ratio 25 % was at 100 W, the product property can be close with calorific value of the leucaena product, indicate that the product can retain the value of the property at low mixed ratio and low power.
When the power was from 250 W to 400 W, the proportion of remaining volatile content was between 1.9 to 4.8 %, ash content was increased from 64.61 to 72.34 %, fixed carbon was between 30.63 to 25.74 % for the torrefied product of the sludge. The property of low-volatile bituminous coal was close to the ratio of H/C of the product at 300 W for the torrefied product of the sludge on the Van Krevelan Diagram. The product properties at 350 W and 150 W were close to the low volatile bituminous coal at sludge ratio 25 % and 50 %, respectively. In the life cycle assessment, the major costs of sludge were water content (85 %) up to 292 kWh in the oven-drying unit, indicate the water content of the sludge represents a significant indicator for sludge treatment. Sludge co-torrefaction can not only reduce drying costs but retain higher the calorific value.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:11Z (GMT). No. of bitstreams: 1
ntu-104-R02541134-1.pdf: 10453570 bytes, checksum: 73b481b0c7e73272f485c6ea24fe0463 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 II
中文摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XIII
第一章 緒論 14
1.1 前言 14
1.2 研究目的 16
1.3 研究內容 17
第二章 文獻回顧 19
2.1 生質廢棄物材料來源與組成 19
2.1.1 生質廢棄物材料之來源 19
2.1.2 生質廢棄物材料之組成 21
2.1.3 木質纖維素之組成與特性 22
2.1.4 污泥之來源與組成 25
2.1.5 銀合歡之來源與組成 27
2.2 生質廢棄物熱處理技術 30
2.2.1 焚化燃燒技術 31
2.2.2 蒸煮分選技術 32
2.2.3 氣化技術 32
2.2.4 電漿火炬技術 32
2.2.5 熱裂解技術 33
2.3 焙燒技術原理 33
2.3.1 焙燒原理 33
2.3.2 焙燒反應機制 36
2.3.3 生質物混燒機制 39
2.4 微波加熱技術 42
2.5 可行性評估分析 48
2.5.1 生命週期評估 48
2.5.2 生質廢棄物焙燒機制之評估 51
第三章 材料與方法 53
3.1 研究整體架構 53
3.2 研究對象 55
3.3 實驗設備 55
3.4 實驗流程 58
3.5 產物分析方法 60
3.5.1 熱重分析 60
3.5.2 近似分析 60
3.5.3 元素分析 61
3.5.4 熱值分析 61
3.6 生命週期評估法 63
3.6.1 目標與範疇界定 63
3.6.1 情境描述與假設 66
3.6.3 盤查清單 68
第四章 結果與討論 72
4.1 銀合歡與污泥之基本性質 72
4.1.1 熱重分析 72
4.1.2 近似分析、元素分析、熱值分析 74
4.2 微波功率對於焙燒反應溫度之關係 76
4.2.1 污泥於不同微波功率下反應之升溫情形 76
4.2.2 銀合歡於不同微波功率下反應之升溫情形 79
4.2.3 微波功率與反應焙燒溫度之關係 82
4.3 污泥銀合歡混合比對於焙燒反應溫度之關係 84
4.3.1 污泥銀合歡混合比於不同微波功率下與反應溫度之情形 84
4.3.2 固定功率下污泥銀合歡混合比隨時間之升溫情形 87
4.3.3 固定功率下污泥銀合歡混合比與溫度之關係 91
4.4 污泥與銀合歡單獨焙燒反應後固相產物之特性分析 93
4.4.1 微波功率對於生質物單獨焙燒產物之重量產率分析 94
4.4.2 微波功率對於單獨焙燒產物之熱值分析 96
4.4.3 微波功率對於單獨焙燒產物之能量產率分析 98
4.4.4 微波功率對於生質物單獨焙燒下重量產率與最高末溫度之分 100
4.4.5 溫度對於單獨焙燒產物熱值之分析 102
4.4.6 微波功率對於單獨焙燒產物之組成分析 104
4.5 污泥添加銀合歡焙燒反應後固相產物之特性分析 112
4.5.1 混合比對於微波功率與焙燒產物熱值之分析 112
4.5.2 微波功率對於混合比與重量產率之分析 114
4.5.3 混合比對於微波功率與能量重量產率之分析 116
4.5.4 混合比對於微波功率與固態產物性質之分析 120
4.6 生命週期評估結果闡釋 128
4.6.1 投入耗能 128
4.6.2 產出效益 130
4.7 產能效益評估 131
第五章 結論與建議 133
5.1 結論 133
5.2 建議 136
參考文獻 138
附錄 142
附錄A 各材料經Dulong formula計算之熱值 142
dc.language.isozh-TW
dc.title利用微波加熱進行下水污泥與銀合歡共焙燒之研究zh_TW
dc.titleCo-torrefacton of Sewage Sludge and Leucaena by
Using Microwave Heating
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲(Kung-Cheh Li),駱尚廉(Shang-Lien Lo)
dc.subject.keyword微波加熱,生質炭,污泥,焙燒,熱值,生命週期評估,zh_TW
dc.subject.keywordMicrowave heating,Biochar,Sludge,Torrefaction,Calorific value,Life cycle assessment (LCA),en
dc.relation.page143
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
10.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved