Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉
dc.contributor.authorYu-Ru Chenen
dc.contributor.author陳裕儒zh_TW
dc.date.accessioned2021-06-15T16:32:06Z-
dc.date.available2015-08-17
dc.date.copyright2015-08-17
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation行政院農業委員會農糧署農業統計資料查詢。臺灣。http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
陳正昇。2009。以分子輔助選種導入hd1、Hd6和ehd1抽穗期基因至水稻越光品種。臺灣大學農藝學研究所學位論文。
陳榮坤、林彥蓉、羅正宗。2012。水稻新品種臺南16 號之育成。臺南區農業改良場研究彙報60: 1-12。
Bantte K. and Prasanna B.M. (2003) Simple sequence repeat polymorphism in Quality Protein Maize(QPM) lines. Euphytica 129: 337-344
Bloom, J. C., Holland. J. B.(2012) Genomic localization of the maizecross-incompatibility gene, Gametophyte factor 1 (ga1). Maydica 56: 379-387
Brown, I.L. (2004) Applications and uses of resistant starch. J. AOAC Int. 87:727–732
Cao, H., James, M. G., Myers, A. M. (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch Biochem Biophys. 373: 135-146
Chen, T., Ning, L., Liu, X., Cui, D., Zhang, H., Li, D., Chen, H. (2013) Development of functional molecular markers of SbeI and SbeIIb for the high amylose maize germplasm line GEMS-0067.Crop Sci. 53: 482-490
Collard, B. C. andMackill D. J. (2008)Marker-assisted selection: an approach for precision plant breeding in the twenty-first century.Philos Trans R Soc Lond B Biol Sci.363: 557-572
Duan, D. X., Donner, E., Liu, Q., Smith, D.C., Ravenelle, F. (2012) Potentiometric titration for determination of amylose content of starch - A comparison with colorimetric method. Food Chem. 130: 1142-1145
Englyst, H. N.and Cummings, J. H. (1985) Digestion of the polysaccharides of some cerealfood in the human small intestine. Am J Nutr. 42: 778-787
Englyst, H. N. and Macfarlane, G. T. (1986) Breakdown of resistant and readily digestible starch by human gut bacteria. J Sci Food Agric. 37:699-706
Fergason, V. L. and Zuber, M. S. (1962). Influence of environment on amylose content of maize endosperm. Crop Sci. 2: 209-211
Forster, B. P., Heberle-Bors, E., Kasha, K. J., Touraev, A. (2007). The resurgence of haploids in higher plants. Trends Plant Sci. 12: 368-375
Frisch M, Bohn M, Melchinger A. E. (1999) Minimum sample size and optimum positioning offlanking markers in marker assisted back crossing for transfer of a target gene. Crop Sci. 39:967-975
Goggi, A. S., Caragea, P., Higino, L. S., Mark, W., Raymond, A., Clark C. (2006) Statistical analysis of cross-fertilization between adjacent maize grain production fields. Field Crops Res. 99: 147-157
Gupta HS, Babu R,Agarwal PK, MahajanV et al. (2013) Accelerated development of quality proteinmaize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breed. 132: 77-82
Haunold, A.and Lindsey, M. F. (1964). Amylose analysis of single kernels and its implication for breeding of high-amylose corn (Zea mays L.). Crop Sci. 4: 58-60
He, Y., Wang, X., Wu, D., Gong, Q., Qiu, H., Liu, Y., Gao, J. (2013) Biodegradable amylose films reinforced by graphene oxide and polyvinyl alcohol. Materi Chem and Physi. 142: 1-11
Jane, J. (2004) Starch: structure and properties. Chemical andFunctional Properties of Food Saccharides. New York: CRC Press, pp.81-101
Jane, J. (2006) Current understanding on starch granule structures. J Appl Glycosci. 53: 205-213
Jane, J. (2007). Structure of starch granules.J Soci Appl Glycosci.54: 31-36.
Kermicle J. L. andEvans M. S. (2005) Pollen-pistil barriers to crossing inmaize and teosinte result from incongruity rather than activerejection. Sex Plant Reprod. 18: 187-194
Kermicle J. L. (2006) A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172: 499-506
Kermicle J. L. and Evans, M. S. (2010) The Zea mays sexual compatibilitygene ga2: naturally occurring alleles, their distribution, and rolein reproductive isolation. Heredity101:737-749
Kramer, H. H., Whistler, R. L., Anderson, E. G. (1956) A new gene interaction in theendosperm of maize. Agron J. 48: 170-172
Lausser, A., Kliwer, I., Srilunchang, K. O., Dresselhaus, T. (2010)Sporophytic control of pollen tube growth and guidance in maize. J Exp Bot. 61: 673-682
Li, L., Jiang, H., Campbell, M., Blanco, M., Jane, J. (2008) Characterization of maizeamylose-extender (ae) mutant starches: Part I. Relationship between resistant starchcontents and molecular structures. Carbohydro Polym. 74: 396-404
Lin K. R., Bockoit A. J., Smith J. D. (1997) Utilization of molecular probes to facilitate development ofQuality Protein Maize. Maize Genet Coop News. 71:22-23
Liu, X., Sun, H., Wu, P., Tian, Y., Cui, D., Xu, C., Li, S., Li, P., Zhang, H., Chen, T., Li, D., Zhao, X., Zhang, Y., Xue, Y., Chen, H. (2014). Fine Mapping of the Maize cross-incompatibility locus (ga1) using a homogeneous population. Crop Sci. 54: 873-881
Mangelsdorf P. C. andJones D.F. (1926) The expression ofMendelian factors in the gametophyte of maize.Genetics 11: 423-455
Morrison, W. R. andKarkalas, J. (1990) Starch, Methods in PlantBiochemistry, Academic Press, pp.323-352
Nelson O. E. (1994) The gametophyte factors of maize. The maize handbook. Springer-Verlag, Berlin,pp. 496-503
Prasanna B. M., Pixley K., Warburton M. L., Xie C. (2010) Molecular marker-assisted breeding formaize improvement in Asia. Mol Breed.26: 339-356
Prasanna, B. M., Chaikam, V., Mahuku, G. (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT.
Richardson, P. H., Jeffcoat, R., Shi, Y. C. (2000) High-amylose starches: From biosynthesisto their use as food ingredients. MRS Bul.25: 20-24
Rober, F. K., Gordillo, G. A., Geiger, H. H. (2005)In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50: 275-283
Wang, H., Qi, M., Cutler, A. J. (1993) A simple method of preparing plant samples for PCR. Nucleic Acids Res. 21: 4153
Schoch, T. J. (1964) Iodimetric determination of amylose. Potentiometric titration:Standard method. Methods in carbohydrate chemistry vol.IV, pp. 157-160
Smith, A. M., Denyer, K., Martin, C. (1997) The synthesis of the starch granule. AnnRev Plan Phys Plan Mol Bio.48: 67-87
Smith, A. M. (2001) The biosynthesis of starch granules. Biomacromolecules 2: 335-341
Stokstad, E. (2011) Can biotech and organic farmers get along? Science 332: 166-69.
Stinard, P. S., Robertson, D. S., Schnable, P. S. (1993) Genetic isolation, cloning, andanalysis of a mutator-induced, dominant antimorph of the maize amylose extender1locus. Plant Cell. 5: 1555-1566
Schnable P.S., et al. (2009) The B73 genome: complexity, diversity, anddynamics. Science 326:1112-1115
Schwartz D (1950) The analysis of a case of cross-sterility in maize.Proc Natl Acad Sci. 36:719-724
Smith, A. M. (2001) The biosynthesis of starch granules. Biomacromolecules 2: 335-341
Topping, D. L.and Clifton, P. M. (2001) Short chain fatty acids and human colonic function:roles of resistant starch and non-starch polysaccharides. Physi Rev. 81: 1031-1064
Vineyard, M. L. and Bear, R. P. (1952) Amylose content.Maize Genet Coop News. 26:5
Vineyard, M. L., Bear, R. P., MacMasters, M. M., Deatherage,W. L. (1958) Development ofamylomaize - corn hybrids with high amylose starch. II. Results of breeding efforts.Agron J. 50: 595-598
Zuber, M. S., Grogan, C. O., Deatherage, W. L., Hubbard, J. E., Schulze, W. E., MacMasters, M. M. (1958). Breeding high amylose corn. Agron J. 50: 9-12
Zhang, H., Liu, X., Zhang, Y. E., Jiang, C., Cui, D., Liu, H., Li D., Wang L., Chen T., Ning L., Ma X., Chen, H. (2012). Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize.Theor Appl Genet. 124: 459-465
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52880-
dc.description.abstract玉米 (Zea mays L.) 是全世界重要的糧食作物之一,且為生產澱粉的重要來源。玉米澱粉在日常生活中的應用十分廣泛,而其中所含的直鏈澱粉經濟價值高,不僅於食用時對人體有所助益,也能應用於工業生產中。然而,於普通玉米澱粉中,直鏈澱粉含量僅占其20-30%,而由隱性ae基因所控制之高直鏈澱粉玉米的直鏈澱粉含量可達50%以上。如推廣高直鏈澱粉玉米於臺灣栽種時,在沒有妥當的田區隔離的栽培下,其籽粒收穫品質將會因花粉直感的影響而下降。為增進高直鏈澱粉玉米的生產品質,本研究導入控制雜交不親合性的基因,Ga1-S,在此基因的控制下,僅有花粉與柱頭具相同基因型時才能成功授粉。因此,本研究利用分子標幟輔助育種的技術,將爆裂種玉米HP301與HP68-07所具有的Ga1-S基因回交導入直鏈澱粉含量達70%以上的GEMS-0067自交系中,經由兩年四個期作的回交工作,已將回交世代推進至BC3F1。另外也將控制高直鏈澱粉的ae主效基因與SbeI修飾基因,以及雜交不親合Ga1-S基因雜交導入172個引進自美國農部的玉米自交系中,建立可避免被花粉汙染的高直鏈澱粉玉米基礎育種材料,以選育高直鏈澱粉玉米雜交一代品種。zh_TW
dc.description.abstractMaize (Zea mays L.) is one of the most important cereals in the world and is beingconsidered as a prominent source for starch. Its starch plays a significant role in our daily life. Especially, its amylose content is not only advantageous to human as a food but also can be applied in industry. In maize, only 20-30% of starch is amylose; however, the amylose content can be reached to 50% resultedby anae recessive gene, which is called high amylose maize.. If planted high amylose maize in fields without proper isolation, the quality of seeds might be affected by xenia through pollen pollutants. This study is aimed to introduce Ga1-S conferring cross-incompatibility into high amylose maize to insure its quality. Plants with Ga1-Scan greatly reduce the probability of cross-pollination; nevertheless, the pollination successeswhile pollens and pistils have the same genotype. Two backcross populations were developed herein thatby popcorn HP301 and HP68-07 with Ga1-S, as the donor parents, crossed with GEMS-0067,with high amylose content, as the recurrent parent. The two indel markers flanking Ga1-s were applied to marker-assisted selection in the two backcross populations. Throughfour seasons of backcrossing, the two populations are now reached to BC3F1 generation. In addition, Ga1-S and genes corresponding to amylose content, including major gene ae and minor gene SbeI, were introduced into 172 maize inbreds to developthe germplasm for selecting and breeding hybrids of high amylose maize.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:06Z (GMT). No. of bitstreams: 1
ntu-104-R00621108-1.pdf: 3029670 bytes, checksum: 1cf5f378b8ce5688dd31495c97f0dfdd (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 I
中文摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
壹、前言 1
貳、前人研究 4
一、玉米胚乳澱粉特性 4
(一)澱粉之生合成 4
(二)澱粉特性與澱粉 5
二、高直鏈澱粉玉米 6
(一)高直鏈澱粉玉米特性與應用 6
(二)高直鏈澱粉玉米育種 7
三、玉米雜交不親合性與其應用 8
四、分子標幟輔助作物育種 10
五、雙單倍體在作物育種之應用 11
參、材料與方法 13
一、試驗材料 13
二、雜交族群之建立 15
三、分子標幟基因型鑑定 20
(一)玉米分子標幟篩選與設計 20
(二)玉米葉片與胚乳DNA提取 21
(三)PCR反應 21
(四)基因型分析 22
(五)基因序列分析 22
四、玉米澱粉性質測定 22
肆、結果 24
一、高直鏈澱粉玉米之澱粉型態與胚乳外觀 24
二、Ga1-S基因之雜交不親合性與雜交族群建立 31
三、Ga1-S基因緊密連鎖分子標幟篩選與遺傳分析 35
四、用於背景選拔之多型性簡單序列重複性分子標幟篩選 41
伍、討論 43
一、雜交不親合Ga1-S基因之遺傳研究 43
二、高直鏈澱粉玉米之育種族群建立 44
三、玉米分子標幟輔助選拔效率 45
四、未來展望 47
陸、參考文獻 49
柒、附錄 53
dc.language.isozh-TW
dc.subject雜交不親合性zh_TW
dc.subject高直鏈澱粉玉米zh_TW
dc.subject分子標幟輔助育種zh_TW
dc.subjectcross-incompatibilityen
dc.subjecthigh amylose maizeen
dc.subjectmarker-assisted selectionen
dc.title以分子標幟輔助選育具雜交不親合基因之高直鏈澱粉玉米zh_TW
dc.titleDevelopment of High Amylose Maize with a Cross Incompatibility Gene by Marker-Assisted Selectionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡凱康,黃懿秦,盧煌勝,謝光照
dc.subject.keyword雜交不親合性,高直鏈澱粉玉米,分子標幟輔助育種,zh_TW
dc.subject.keywordcross-incompatibility,high amylose maize,marker-assisted selection,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved