Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨
dc.contributor.authorCheng-Yi Chiangen
dc.contributor.author江政一zh_TW
dc.date.accessioned2021-06-15T16:32:00Z-
dc.date.available2017-08-19
dc.date.copyright2015-08-19
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citationChap I References
Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680
Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A. (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651-12656
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597-603
Bulina ME, Chudakov DM, Mudrik NN, Lukyanov KA (2002) Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem 3:7
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802-805
Chan MCY, Karasawa S, Mizuno H, Bosanac I, Ho D, Prive GG, Miyawaki A, Ikura M (2006) Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. J Biol Chem 281:37813-37819
Chen CC, Hwang JK, Yang JM (2006) (PS)2: protein structure prediction server. Nucleic Acids Res 34:W152-157
Chudakov DM, Feofanov AV, Mudriku NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to 'kindling fluorescent protein' riddle. J Biol Chem 278:7215-7219
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448-455
Dove SG, Takabayashi M, HoeghGuldberg O (1995) Isolation and partial characterization of the pink and blue pigments of pocilloporid and acroporid corals. Biol Bull 189:288-297
Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, Martynov VI, Yanushevich YG, Lukyanov KA, Lukyanov SA (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. Febs Letters 507:16-20
Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663-664
Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501-12504
Inouye S, Tsuji FI (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 341:277-280
Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci U S A 99:4256-4261
Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, Tsai HJ (2006) Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299:594-608
Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan WY, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879-25882
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969-973
Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051-1058
Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci U S A 93:13617-13622
Pakhomov AA, Pletneva NV, Balashova TA, Martynov VI (2006) Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Biochemistry 45:7256-7264
Pletnev VZ, Pletneva NV, Lukyanov KA, Souslova EA, Fradkov AF, Chudakov DM, Chepurnykh T, Yampolsky IV, Wlodawer A, Dauter Z, Pletnev S (2013) Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallogr D Biol Crystallogr 69:1850-1860
Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247-4260
Shkrob MA, Yanushevich YG, Chudakov DM, Gurskaya NG, Labas YA, Poponov SY, Mudrik NN, Lukyanov S, Lukyanov KA (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. The Biochemical journal 392:649-654
Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, Verkhusha VV (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5:118-126
Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845-854
Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289-296
Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7:1133-1138
Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1 Å crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 349:223-237
Chap II References
Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680
Bulina ME, Chudakov DM, Mudrik NN, Lukyanov KA (2002) Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem 3:7
Chan MCY, Karasawa S, Mizuno H, Bosanac I, Ho D, Prive GG, Miyawaki A, Ikura M (2006) Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus. J Biol Chem 281:37813-37819
Chiang CY, Chen YL, Tsai HJ (2014) Different visible colors and green fluorescence were obtained from the mutated purple chromoprotein isolated from sea anemone. Mar Biotechnol (NY) 16:436-446
Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003a) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194
Chudakov DM, Feofanov AV, Mudriku NN, Lukyanov S, Lukyanov KA (2003b) Chromophore environment provides clue to 'kindling fluorescent protein' riddle. J Biol Chem 278:7215-7219
Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212-1218
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20: 448-455
Dove SG, Takabayashi M, HoeghGuldberg O (1995) Isolation and partial characterization of the pink and blue pigments of pocilloporid and acroporid corals. Biol Bull 189:288-297
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11990-11995
Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, Martynov VI, Yanushevich YG, Lukyanov KA, Lukyanov SA (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. Febs Letters 507:16-20
Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501-12504
Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, Tsai HJ (2006) Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299:594-608
Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan WY, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879-25882
Mölich A, Heisler N (2005) Determination of pH by microfluorometry: intracellular and interstitial pH regulation in developing early-stage fish embryos (Danio rerio). J Exp Biol 208:4137-4149
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355-367
Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci U S A 93:13617-13622
Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392-1395
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
Pakhomov AA, Pletneva NV, Balashova TA, Martynov VI (2006) Structure and reactivity of the chromophore of a GFP-like chromoprotein from Condylactis gigantea. Biochemistry 45:7256-7264
Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, Prescott M, Rossjohn J (2003) The 2.0-Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278: 44626-44631
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605-1612
Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV (2012) A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP. J Mol Biol 417:144-151
Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S, Hoegh-Guldberg O, Devenish RJ, Rossjohn J (2003) The 2.2 Å crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275-284
Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247-4260
Shkrob MA, Yanushevich YG, Chudakov DM, Gurskaya NG, Labas YA, Poponov SY, Mudrik NN, Lukyanov S, Lukyanov KA (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J 392:649-654
Sniegowski JA, Lappe JW, Patel HN, Huffman, HA, Wachter RM (2005a) Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem 280:26248-26255
Sniegowski JA, Phail ME, Wachter RM (2005b) Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Biochem Biophys Res Commun 332: 657-663
Storer AC, Menard R (1994) Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol 244:486–500
Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845-854
Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289-296
Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7:1133-1138
Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1 Å crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 349:223-237
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235-242
Yang F, Moss LG, Phillips GN Jr. (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246-1251.
Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc Natl Acad Sci U S A 98:462-467
Chap III References
Ai HW, Shaner NC, Cheng Z, Tsien RY, Campbell RE (2007) Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46:5904-5910
Battad JM, Traore DA, Byres E, Rossjohn J, Devenish RJ, Olsen S, Wilce MC, Prescott M (2012) A green fluorescent protein containing a QFG tri-peptide chromophore: optical properties and X-ray crystal structure. PLoS One 7:e47331
Bulina ME, Chudakov DM, Mudrik NN, Lukyanov KA (2002) Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem 3:7
Chiang CY, Chen, YL, Tsai HJ (2014) Different visible colors and green fluorescence were obtained from the mutated purple chromoprotein isolated from sea anemone. Mar Biotechnol (NY) 16:436-446
Chudakov DM, Feofanov AV, Mudriku NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to 'kindling fluorescent protein' riddle. J Biol Chem 278:7215-7219
Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212-1218
Craggs TD (2009) Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev. 38:2865-2875
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448-455
Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11990-11995
Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA, Martynov VI, Yanushevich YG, Lukyanov KA, Lukyanov SA (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. Febs Letters 507:16-20
Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501-12504
Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178-182.
Kremers GJ, Goedhart J, van den Heuvel DJ, Gerritsen HC, Gadella TW Jr. (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46:3775-3783
Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, Tsai HJ (2006) Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299:594-608
Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan WY, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879-25882
Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24:1569-1571
Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392-1395.
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276:307–326
Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ, Prescott M, Rossjohn J (2003) The 2.0-Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278:44626-44631
Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905-909
Strongin DE, Bevis B, Khuong N, Downing ME, Strack RL, Sundaram K, Glick BS, Keenan RJ (2007) Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Protein Eng Des Sel 20:525-534
Subach OM, Gundorov IS, Yoshimura M, Subach FV, Zhang J, Grüenwald D, Souslova EA, Chudakov DM, Verkhusha VV (2008) Conversion of red fluorescent protein into a bright blue probe. Chem Biol 15:1116-1124
Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, Verkhusha VV (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 5:118-126
Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509-544
Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845-854
Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289-296
Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7:1133-1138
Wilmann PG, Petersen J, Pettikiriarachchi A, Buckle AM, Smith SC, Olsen S, Perugini MA, Devenish RJ, Prescott M, Rossjohn J (2005) The 2.1 Å crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. J Mol Biol 349:223-237
Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc Natl Acad Sci U S A 98:462-467
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52878-
dc.description.abstractGFP-like protein family在生物學應用上為良好的marker以及reporter,傳統螢光蛋白常需利用螢光設備幫助觀察因而具有限制性,且色彩主要侷限於紅、黃、綠等顏色。為了拓展可應用的色彩,以及提高觀察的便利性,我們希望獲取新種的藍色或紫色色澤蛋白。我們從表現天然藍、紫色色彩的地毯海葵觸手組織中選殖出新種的紫色色澤蛋白shCP與新種的藍色色澤蛋白sgBP。純化後的shCP於574 nm處有最大的吸收峰值,sgBP於608 nm處有最大的吸收峰值。藉由結構導向的定點突變法改變色澤蛋白chromophore以及chromophore周圍5 Å的氨基酸殘基,發現對於shCP chromophore的第63位置的氨基酸glutamate突變為serine(E63S)時,可使原來的紫色蛋白呈現粉紅色;而蛋白質序列具Q39S突變時,則為紅色;另一方面,位於sgBP chromophore周邊第157位置的serine突變為S157C時,可將突變蛋白變為深藍色色澤。為了證明shCP與sgBP做為生物性標記(biomarker)的實用性,我們構築好以斑馬魚α-actin啟動子表現shCP、sgBP與及其突變型色澤蛋白的表現載體並以顯微注射法進行基因轉殖。經轉殖後的胚胎在飼育至性成熟後可篩選出具有transient色澤表現的成魚,例如帶有shCP表現載體的斑馬魚其肌肉中會出現紫紅色;帶有shCP-E63S的斑馬魚可呈現粉紅色;帶有sgBP的斑馬魚則可表現藍色,且由配對實驗可確認色澤基因可被穩定遺傳至子代。本研究應用新種色澤蛋白並找出可利用突變造成chromophore deprotonation的效果進而影響蛋白顏色表現的機制,並且確認色澤蛋白與其突變衍生物做為生物性標記的應用性。zh_TW
dc.description.abstractGFP-like proteins have been studied with the aim of developing fluorescent proteins. Since the property of color variation is understudied, we isolated novel GFP-like chromoproteins from the carpet anemone Stichodactyla haddoni and Stichodactyla gigantea, termed shCP and sgBP, respectively. The shCP protein has maximum absorption wavelength peak (λmax) is located at 574 nm, resulting in a purple appearance. The sgBP has a λmax at 608 nm and shows a blue appearance. We mutated aa residues to enhance the color properties according to the simulated structure of shCP and the crystal structure of sgBP. With the mutations in and surrounding 5 Å of the chromophore, we found that the mutated proteins exhibited altered optical properties. The λmax of chromophore-mutated protein shCP-E63S was shifted to 560 nm and exhibited a pink color. shCP with surrounding mutations Q39S and T194I also exhibited coloration changes to red and purple-blue. An additional mutation at I196H of the mutated protein shCP-E63L exhibited green fluorescence. In the chromoprotein sgBP, the surrounding S157C mutation shifted the λmax to 604 nm and darkened the blue color expression, indicating the color expression of chromoprotein could be altered by deprotonation state change of the phenolic group in the chromophore. Additionally, we found that the cDNAs of shCP, sgBP and its mutated varieties are faithfully and stably expressed both in Escherichia coli and zebrafish embryos. Our results provide a structural basis for the color regulation of the biomarker development.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:32:00Z (GMT). No. of bitstreams: 1
ntu-104-F97b43018-1.pdf: 7799979 bytes, checksum: b3ab171a6b87063b0447e0f82572af05 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
中文摘要……1
Abstract……2
Literature review……4
Chapter I. Purple chromoprotein shCP……13
Introduction……13
Experimental procedures……17
Results……22
Discussion……28
References……35
Tables & Figures……40
Chapter II. Blue chromoprotein sgBP……52
Introduction……52
Experimental procedures……55
Results……62
Discussion……70
References……76
Tables & Figures……82
Chapter III. Conversion of chromoprotein into blue fluorescent protein……94
Introduction……94
Experimental procedures……97
Results……100
Discussion……105
References……112
Tables & Figures……117
dc.language.isoen
dc.subject色澤蛋白zh_TW
dc.subject生物標記zh_TW
dc.subject蛋白質工程zh_TW
dc.subject基因轉殖zh_TW
dc.subjectchomoproteinen
dc.subjectbiomarkeren
dc.subjectprotein engineeringen
dc.subjecttransgenesisen
dc.title新型海洋生物色澤蛋白之基因、結構與產生不同成色的突變和機制zh_TW
dc.titleMolecular Cloning, Structural Characterization and Color-regulating Mechanism of Novel Chromoprotein Isolated from Marine Organismsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee王惠鈞,黃鎮剛,楊啟伸,溫進德
dc.subject.keyword色澤蛋白,生物標記,蛋白質工程,基因轉殖,zh_TW
dc.subject.keywordchomoprotein,biomarker,protein engineering, transgenesis,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2015-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved