Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52853
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭(Anthony J. T. Lee)
dc.contributor.authorYu-Jhen Wangen
dc.contributor.author王譽臻zh_TW
dc.date.accessioned2021-06-15T16:30:42Z-
dc.date.available2025-08-01
dc.date.copyright2020-08-10
dc.date.issued2020
dc.date.submitted2020-08-05
dc.identifier.citation[1] N.E. Friedkin, A structural theory of social influence, Cambridge University Press, 1998.
[2] R.E. Rice, A.E. Grant, J. Schmitz, J. Torobin, Individual and network influences on the adoption and perceived outcomes of electronic messaging, Social Networks 12 (1990) 27–55.
[3] R.S. Burt, Social contagion and innovation: Cohesion versus structural equivalence, American Journal of Sociology 92 (1987) 1287–1335.
[4] D. Knoke, Networks of political action: Toward theory construction, Social Forces 68 (1990) 1041–1063.
[5] F. Lorrain, H.C. White, Structural equivalence of individuals in social networks, The Journal of Mathematical Sociology 1 (1971) 49–80.
[6] P. Melville, V. Sindhwani, Recommender systems, Encyclopedia of Machine Learning, 2010, pp. 829–838.
[7] T. Raval, Y. Patel, A survey: Collaborative filtering, content-based filtering, hybrid recommendation approach, International Journal for Innovative Research in Multidisciplinary Field 3 (2017) 193–197.
[8] M.J. Pazzani, D. Billsus, Content-based recommendation systems, Springer, 2007, pp. 325–341.
[9] J.L. Herlocker, J.A. Konstan, J. Riedl, Explaining collaborative filtering recommendations, Proc. ACM Conference on Computer Supported Cooperative Work, 2000, pp. 241–250.
[10] M. Ahmed, M.T. Imtiaz, R. Khan, Movie recommendation system using clustering and pattern recognition network, Proc. IEEE 8th Annual Computing and Communication Workshop and Conference, 2018, pp. 143–147.
[11] L. Eberhard, S. Walk, L. Posch, D. Helic, Evaluating narrative-driven movie recommendations on reddit, Proc. International Conference on Intelligent User Interfaces, 2019, pp. 1–11.
[12] X. Chen, P. Zhao, Y. Liu, L. Zhao, J. Fang, V.S. Sheng, Z. Cui, Exploiting aesthetic features in visual contents for movie recommendation, IEEE Access 7 (2019) 49813–49821.
[13] L. Zhao, Z. Lu, S.J. Plan, Q. Yang, Matrix factorization+ for movie recommendation, Proc. International Joint Conference on Artificial Intelligence, 2016, pp. 3945–3951.
[14] B. Yang, T. Mei, X.-S. Hua, L. Yang, S.-Q. Yang, M. Li, Online video recommendation based on multimodal fusion and relevance feedback, Proc. of the 6th ACM International Conference on Image and Video Retrieval, 2007, pp. 73–80.
[15] N. Koenigstein, U. Paquet, Xbox movies recommendations: Variational Bayes matrix factorization with embedded feature selection, Proc. ACM Conference on Recommender Systems, 2013, pp. 129–136.
[16] Y. Wang, M. Wang, W. Xu, A sentiment-enhanced hybrid recommender system for movie recommendation: A big data analytics framework, Wireless Communications and Mobile Computing 2018 (2018) 1-9.
[17] X. Wang, F. Luo, C. Sang, J. Zeng, S. Hirokawa, Personalized movie recommendation system based on support vector machine and improved particle swarm optimization, IEICE Transactions on Information and Systems E100.D (2017) 285–293.
[18] S. Kumar, K. De, P.P. Roy, Movie recommendation system using sentiment analysis from microblogging data, IEEE Transactions on Computational Social Systems (2020) 1–9.
[19] Z. Chen, S. Zhu, Q. Niu, T. Zuo, Knowledge discovery and recommendation with linear mixed model, IEEE Access 8 (2020) 38304–38317.
[20] R. He, J. McAuley, VBPR: Visual Bayesian personalized ranking from implicit feedback, Proc. AAAI Conference on Artificial Intelligence, 2016, pp. 144–150.
[21] W. Zhao, B. Wang, M. Yang, J. Ye, Z. Zhao, X. Chen, Y. Shen, Leveraging long and short-term information in content-aware movie recommendation via adversarial training, IEEE Transactions on Cybernetics (2019) 1–14.
[22] Z. Zhao, Q. Yang, H. Lu, T. Weninger, D. Cai, X. He, Y. Zhuang, Social-aware movie recommendation via multimodal network learning, IEEE Transactions on Multimedia 20 (2018) 430–440.
[23] M. He, B. Wang, X. Du, Hi2rec: Exploring knowledge in heterogeneous information for movie recommendation, IEEE Access 7 (2019) 30276–30284.
[24] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, D. Sampath, The YouTube video recommendation system, Proc. the Fourth ACM Conference on Recommender Systems, 2010, pp. 293–296.
[25] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item collaborative filtering, IEEE Internet Computing 7 (2003) 76–80.
[26] M. Uluyagmur, Z. Cataltepe, E. Tayfur, Content-based movie recommendation using different feature sets, Proc. World Congress on Engineering and Computer Science, 2012, pp. 17–24.
[27] H. Chen, Y. Wu, M. Hor, C. Tang, Fully content-based movie recommender system with feature extraction using neural network, Proc. International Conference on Machine Learning and Cybernetics, 2017, pp. 504–509.
[28] T. Lehinevych, N. Kokkinis-Ntrenis, G. Siantikos, A.S. Dogruöz, T. Giannakopoulos, S. Konstantopoulos, Discovering Similarities for Content-Based Recommendation and Browsing in Multimedia Collections, Proc. International Conference on Signal-Image Technology and Internet-Based Systems, 2014, pp. 237–243.
[29] Q. Chen, L. Hu, S. Jian, L. Cao, Interpretable recommendation via attraction modeling: Learning multilevel attractiveness over multimodal movie contents, Proc. International Joint Conference on Artificial Intelligence, 2018, pp. 3400–3406.
[30] M.H. Rimaz, M. Elahi, F. Bakhshandegan Moghadam, C. Trattner, R. Hosseini, M. Tkalcic, Exploring the power of visual features for the recommendation of movies, Proc. ACM Conference on User Modeling, Adaptation and Personalization, 2019, pp. 303–308.
[31] M. Elahi, Y. Deldjoo, F. Bakhshandegan Moghaddam, L. Cella, S. Cereda, P. Cremonesi, Exploring the semantic gap for movie recommendations, Proc. ACM Conference on Recommender Systems, 2017, pp. 326–330.
[32] Y. Deldjoo, M. Elahi, P. Cremonesi, F. Garzotto, P. Piazzolla, Recommending movies based on mise-en-scene design, Proc. CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2016, pp. 1540–1547.
[33] Q. Diao, M. Qiu, C.-Y. Wu, A.J. Smola, J. Jiang, C. Wang, Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS), Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 193–202.
[34] M. Ibrahim, I.S. Bajwa, R. Ul-Amin, B. Kasi, A neural network-inspired approach for improved and true movie recommendations, Computational Intelligence and Neuroscience 2019 (2019) 1-19.
[35] W. Yuan, H. Wang, X. Yu, N. Liu, Z. Li, Attention-based context-aware sequential recommendation model, Information Sciences 510 (2020) 122–134.
[36] J.M. Musa, X. Zhihong, Item based collaborative filtering approach in movie recommendation system using different similarity measures, Proc. International Conference on Computer and Technology Applications, 2020, pp. 31–34.
[37] D. Liang, R.G. Krishnan, M.D. Hoffman, T. Jebara, Variational autoencoders for collaborative filtering, Proc. of the World Wide Web Conference, 2018, pp. 689–698.
[38] S. Lobel, C. Li, J. Gao, L. Carin, Towards amortized ranking-critical training for collaborative filtering, Proc. International Conference on Learning Representations, 2020, pp. 1–19.
[39] H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems, Proc. International Joint Conference on Artificial Intelligence, 2017, pp. 3203–3209.
[40] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273–297.
[41] X. Fang, P.J.-H. Hu, Top persuader prediction for social networks, MIS Quarterly. 42 (2018) 63–82.
[42] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
[43] Z. Lu, X. Jiang, A. Kot, Deep coupled ResNet for low-resolution face recognition, IEEE Signal Processing Letters 25 (2018) 526–530.
[44] M.S. Hanif, M. Bilal, Competitive residual neural network for image classification, ICT Express 6 (2020) 28–37.
[45] H. Jung, M.-K. Choi, J. Jung, J.-H. Lee, S. Kwon, W. Young Jung, ResNet-based vehicle classification and localization in traffic surveillance systems, Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 61–67.
[46] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 504–507.
[47] J. Kim, J. Nam, I. Gurevych, Learning semantics with deep belief network for cross-language information retrieval, Proc. International Conference on Computational Linguistics, 2012, pp. 579–588.
[48] F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder, Proc. ACM International Conference on Multimedia, 2014, pp. 7–16.
[49] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, Proc. International Conference on Machine Learning, 2011, pp. 689-696.
[50] Y. Kim, Convolutional neural networks for sentence classification, Proc. Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751.
[51] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, Proc. International Conference on Neural Information Processing Systems, 2013, pp. 3111–3119.
[52] Z. Rasheed, Y. Sheikh, M. Shah, On the use of computable features for film classification, IEEE Transactions on Circuits and Systems for Video Technology. 15 (2005) 52–64.
[53] Y. Koren, R. Bell, C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer. 42 (2009) 30–37.
[54] S. Kabbur, X. Ning, G. Karypis, FISM: Factored item similarity models for top-N recommender systems, Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 659–667.
[55] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, T.-S. Chua, Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention, Proc. International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017, pp. 335–344.
[56] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR: Bayesian personalized ranking from implicit feedback, Proc. Conference on Uncertainty in Artificial Intelligence, 2009, pp. 452–461.
[57] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, Proc. International Conference on Learning Representations, 2015, pp. 1–15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52853-
dc.description.abstract隨著社群網絡的蓬勃發展,電影公司開始通過各種社群平台宣傳電影,例如Instagram。因此,在本研究中,我們提出了一個研究框架推薦電影帳戶給Instagram上的使用者。所提出的研究框架包括三個階段,首先,我們從Instagram蒐集資料,並提取照片、關注和社群相關的特徵;接著,我們從IMDb蒐集資料,並提取文字、海報、預告片和社群相關的特徵;最後,根據所提取的特徵,我們提出一個電影帳戶推薦模型(MARM)來計算每個電影的推薦分數,並推薦得分最高的前k部電影給使用者。實驗結果顯示,我們提出的方法優於所有的比較方法,並可減輕冷啟動問題的效應。我們所提出的研究框架可以幫助電影公司或企業吸引潛在觀眾,並擬訂有效的目標式宣傳策略。zh_TW
dc.description.abstractWith the growth of social networks, movie companies start to create accounts to promote their movies on various social platforms, especially on popular ones like Instagram. Therefore, in this study, we propose a framework to recommend movie accounts to users on Instagram. The proposed framework contains three phases. First, we extract the photo, following and social feature vectors from the data collected from Instagram. Next, we extract the textual, poster, trailer and social feature vectors from the data collected from IMDb. Finally, based on the feature vectors extracted, we propose a Movie Accounts Recommendation Model (MARM) to compute the recommendation score of each movie account, and recommend top-k movies with the highest scores to users. The experimental results show that our proposed method outperforms the state-of-the-art methods in terms of precision, recall, F1-score and Normalized Discounted Cumulative Gain (NDCG), and mitigates the effect of cold start problems. Our proposed framework can help movie companies or businesses reach potential audiences and implement effective targeted advertising strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:30:42Z (GMT). No. of bitstreams: 1
U0001-0508202021143800.pdf: 7762323 bytes, checksum: f626be563de2237e171bea11fc3377a0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 The Proposed Framework 9
3.1 Features Extracted from Instagram 11
3.1.1 Photo feature vector 11
3.1.2 Social features from Instagram 12
3.1.3 Following feature vector 13
3.2 Features Extracted from IMDb 14
3.2.1 Textual feature vector 14
3.2.2 Poster feature vector 16
3.2.3 Trailer feature vector 17
3.2.4 Social features from IMDb 19
3.3 Movie Accounts Recommendation Model 19
Chapter 4 Experimental Results 23
4.1 Dataset 23
4.2 Performance Evaluation 27
4.2.1 Cold start 29
4.2.2 Effects of features 30
4.2.3 Effects of attention mechanism 32
4.3 Latent Semantics of the Embedding 33
4.4 Effects of Latent Factors 38
Chapter 5 Conclusions and Future Work 40
References 43
dc.language.isoen
dc.subject電影帳戶推薦zh_TW
dc.subject深度學習模型zh_TW
dc.subject注意力機制zh_TW
dc.subject冷啟動問題zh_TW
dc.subject目標式宣傳策略zh_TW
dc.subjecttargeted advertising strategyen
dc.subjectmovie accounts recommendationen
dc.subjectdeep learning modelen
dc.subjectattention mechanismen
dc.subjectcold start problemen
dc.titleInstagram 平台電影帳號推薦zh_TW
dc.titleMovie Accounts Recommendation on Instagramen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁(Duen-Ren Liu),柯士文(Shih-Wen Ke)
dc.subject.keyword電影帳戶推薦,深度學習模型,注意力機制,冷啟動問題,目標式宣傳策略,zh_TW
dc.subject.keywordmovie accounts recommendation,deep learning model,attention mechanism,cold start problem,targeted advertising strategy,en
dc.relation.page48
dc.identifier.doi10.6342/NTU202002497
dc.rights.note有償授權
dc.date.accepted2020-08-06
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-0508202021143800.pdf
  未授權公開取用
7.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved