Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 公共衛生碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕(Kuen-Yuh Wu)
dc.contributor.authorShao Zu Huangen
dc.contributor.author黃紹祖zh_TW
dc.date.accessioned2021-06-15T16:29:11Z-
dc.date.available2015-09-14
dc.date.copyright2015-09-14
dc.date.issued2015
dc.date.submitted2015-08-13
dc.identifier.citation1. Chen, H.W., Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull Environ Contam Toxicol, 2007. 78(1): p. 5-9.
2. Chepesiuk, R., Where the chips fall: Environmental health in the semiconductor industry. Environmental Health Perspectives, 1999. 107(9): p. A452-A457.
3. Kinoulty, M., & Williams, N. , Occupational health provision and health surveillance in the semiconductor industry. Occupational Medicine (Oxford, England), 2006. 56(2): p. 100-101.
4. Smith, V., & English, J. S. C. , The electronics industry. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 661-674.
5. Chelton, C.F., Glowatz, M., & Mosovsky, J. A. , Chemical hazards in the semiconductor industry. IEEE Transactions on Educations, 1991(34(3)): p. 269-288.
6. OECD, EMISSION SCENARIO DOCUMENT ON PHOTORESIST USE IN SEMICONDUCTOR MANUFACTURING, in Health and Safety Publications Series on Emission Scenario Documents No. 9. 2010.
7. Zalk, D.M. and G.H. Heussen, Banding the world together; the global growth of control banding and qualitative occupational risk management. Saf Health Work, 2011. 2(4): p. 375-9.
8. Zalk, D.M. and D.I. Nelson, History and evolution of control banding: a review. J Occup Environ Hyg, 2008. 5(5): p. 330-46.
9. 勞動部職業安全衛生署, 危害性化學品評估及分級管理辦法總說明. 2014.
10. Organization, I.L., International Chemical Control Toolkit Draft Guidelines. 2006.
11. Hashimoto, H., Goto, T., Nakachi, N., Suzuki, H., Takebayashi, T., Kajiki, S., & Mori, K. , Evaluation of the control banding method-Comparison with measurement-based comprehensive risk assessment. Journal of occupational health, 2007. 49(6): p. 482-492.
12. Jones, R.M., and Nicas M. , Evaluation of COSHH Essentials for vapor degreasing and bag filling operations. Ann. Occup. Hyg, 2006(50(2)): p. 137-147
13. Lee, E., J.E. Slaven, R.B. Bowen, and M. Harper, Evaluation of COSHH Essentials model with a mixture of organic chemicals at a medium plant. Ann. Occup. Hyg, 2011. 55: p. 16-29.
14. Tischer, M., Evaluation of the HSE COSHH Essentials Exposure Predictive Model on the Basis of BAuA Field Studies and Existing Substances Exposure Data. Annals of Occupational Hygiene, 2003. 47(7): p. 557-569.
15. Ruden, C., and S.O. Hansson How accurate are the European Union’s classifications of chemical substances. Toxicol. Lett, 2003(144(2)): p. 159-172
16. Nicol, A.M., Hurrell, A. C., Wahyuni, D., McDowall, W., & Chu, W. , Accuracy, comprehensibility, and use of material safety data sheets: A review. American journal of industrial medicine, 2008. 51(11): p. 861-876.
17. C. Maie, A.P., J, The Hierarchy of OELs-March 2014 Synergist.pdf, in The Synergist, A.I.H.A. (AIHA), Editor. 2014.
18. ECETOC, Outline Concept of a Pragmatic Approach to Risk Assessment. Brussels: ECETOC. 2002, European Centre for Ecotoxicology and Toxicology of Chemicals
19. EPA. Human Health Risk Assessment. 2012 August, 2012 [cited 2015 June].
20. EPA, U.S., Benchmark Dose Guidance, R.A. Forum, Editor. 2012, U.S. Environmental Protection Agency: Washington, DC 20460.
21. Tielemans, E., et al., Stoffenmanager exposure model: development of a quantitative algorithm. Ann Occup Hyg, 2008. 52(6): p. 443-54.
22. Marquart, H., et al., 'Stoffenmanager', a web-based control banding tool using an exposure process model. Ann Occup Hyg, 2008. 52(6): p. 429-41.
23. Schinkel, J., et al., Cross-validation and refinement of the Stoffenmanager as a first tier exposure assessment tool for REACH. Occup Environ Med, 2010. 67(2): p. 125-32.
24. Riedmann, R.A., B. Gasic, and D. Vernez, Sensitivity Analysis, Dominant Factors, and Robustness of the ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5 Occupational Exposure Models. Risk Anal, 2015. 35(2): p. 211-25.
25. Hewett, P., et al., Rating exposure control using Bayesian decision analysis. Journal of Occupational and Environmental Hygiene, 2006. 3(10): p. 568-581.
26. van de Ven, P., et al., Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology. J Occup Environ Hyg, 2010. 7(4): p. 216-23.
27. Torres, C., et al., A model to systematically employ professional judgment in the Bayesian Decision Analysis for a semiconductor industry exposure assessment. J Occup Environ Hyg, 2014. 11(6): p. 343-53.
28. Roy, A., P. Srivastava, and S. Sinha, Risk and reliability assessment in chemical process industries using Bayesian methods. Reviews in Chemical Engineering, 2014. 30(5).
29. Lee, E.G., et al., Exposure models for the prior distribution in bayesian decision analysis for occupational hygiene decision making. J Occup Environ Hyg, 2013. 10(2): p. 97-108.
30. Banerjee, S., et al., Bayesian hierarchical framework for occupational hygiene decision making. Ann Occup Hyg, 2014. 58(9): p. 1079-93.
31. Koppisch, D., et al., Use of the MEGA exposure database for the validation of the Stoffenmanager model. Ann Occup Hyg, 2012. 56(4): p. 426-39.
32. Ehrlich, Risk Assessment Guidelines Update, U.S.E.P. Agency, Editor. 1988: Washington, D.C.
33. Roy, D., et al., DNQ-novolac photoresists revisited:1H and13C NMR evidence for a novel photoreaction mechanism. Magnetic Resonance in Chemistry, 2003. 41(2): p. 84-90.
34. NTP, Chemical Information Review Document for Diazonaphthoquinone Derivatives Used in Photoresists, in Supporting Nomination for Toxicological Evaluation by the National Toxicology Program. 2006, National Toxicology Program.
35. Claussen, L., Dresden, Penner, Ottendorf-Okrilla, Vogt, Sperlich, Method For Fabricating A Semiconductor Structure, in United States Patent. 2001, Siemens Aktiengesellschaft, Munich (DE): United States.
36. Park, S.H., et al., Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories. Saf Health Work, 2011. 2(3): p. 210-7.
37. Borges, B.G.A.L., et al., Estudo da decomposição fotoquímica por exposição à luz UV de fotorresinas positivas. Química Nova, 2012. 35: p. 319-322.
38. de Jonge, J., Dijkstra, R. and Braun, P. B., The thermal decomposition of O-hydroxy-diazonium compounds. Recl. Trav. Chim. Pays-Bas, 1949. 68: p. 430–432.
39. Gupta, T.K., Effect Of Temperature On The Photosensitivity Of a Photoresist (AZ 1350J). European Polymer Journal, 1981. 17: p. 1127-1130.
40. Domoradzki, J.Y., K.A. Brzak, and C.M. Thornton, Hydrolysis kinetics of propylene glycol monomethyl ether acetate in rats in vivo and in rat and human tissues in vitro. Toxicol Sci, 2003. 75(1): p. 31-9.
41. OECD, 1-Methoxypropan-2-ol (PGME), in SIDS Initial Assessment Report for 11th SIAM. 2001.
42. Stewart, R.D., et al., Experimental human exposure to vapor of propylene glycol monomethyl ether. Experimental human exposure. Arch Environ Health, 1970. 20(2): p. 218-23.
43. Emmanuel Lemazurier, A.L., Franck Robidel and Fre ´de ´ric Y Bois, Propylene glycol monomethyl ether. A three-generation study of isomer b effects on reproductive and developmental parameters in rats. Toxicology and Industrial Health, 2005(21): p. 33-40
44. E. W. Carney, J.W.C., A. B. Liberacki, C. M. Clements, and W.J. Breslin, Assessment of Adult and Neonatal Reproductive Parameters in Sprague-Dawley Rats Exposed to Propylene Glycol Monomethyl Ether Vapors For Two Generations. Toxicological Sciences, 1999(50): p. 249-258.
45. Spencer, P.J., Crissman, J.W. , William T. Stott, Richard A. Corley, Frank S. Cieszlak, Alan M. Schuman, and Jerry F. Hardisty, Propylene Glycol Monomethyl Ether (PGME): Inhalation Toxicity and Carcinogenicity in Fischer 344 Rats and B6C3F1 Mice. Toxicologic Pathology, 2002. 30(5): p. 570-579.
46. ATSDR, Toxicological Profile of Phenol, P.H. Services, Editor. 2008, U.S. Department of Health and HUman Services: Atlanta, GA.
47. EPA, Toxicological Review of Phenol. 2005, U.S. Environmental Protection Agency: Washington, DC.
48. Hoffman, G.M., et al., Two-week (ten-day) inhalation toxicity and two-week recovery study of phenol vapor in the rat. International Journal of Toxicology, 2001. 20(1): p. 45-52.
49. ATSDR, Toxicological Review of Cresol, P.H. Service, Editor. 2008, U.S. Department of Health and Human Services: Atlanta, GA.
50. Sanders, J.M., et al., Carcinogenesis studies of cresols in rats and mice. Toxicology, 2009. 257(1-2): p. 33-9.
51. ATSDR, Toxicological Profile for Benzene, P.H. Service, Editor. 2008, U.S. Department of Health and Human Services: Atlanta, GA.
52. IRIS, Benzene, I.R.I. System, Editor. 2007, U.S. Environmental Protection Agency: Washington, DC.
53. EPA, Toxicological Review of Toluene, EPA, Editor. 2005.
54. ATSDR, Toxicological Profile of Xylene, CDC, Editor. 2007.
55. Morgott, D.A. and R.J. Nolan, Nonlinear kinetics of inhaled propylene glycol monomethyl ether in Fischer 344 rats following single and repeated exposures. Toxicol Appl Pharmacol, 1987. 89(1): p. 19-28.
56. EPA, Hazardous Waste Management System: Identification and Listing of Hazardous Waste Solvents, U.S.E.P. Agency, Editor. 1998: Washington, D.C.
57. Sturtevant, J.L. and R.R. Kunz, <title>Photoresist outgassing: a potential Achilles heel for short-wavelength optical lithography?</title>. 2004. 5376: p. 1-15.
58. Schellenberg, F.M., et al., <title>Quantitative measurement of outgas products from EUV photoresists</title>. 2008. 6921: p. 69211H-69211H-7.
59. Schinkel, J., et al., Reliability of the Advanced REACH Tool (ART). Ann Occup Hyg, 2014. 58(4): p. 450-68.
60. B.V., C. Background - Stofffenmanager®. 2003 [cited 2015 August, 5th].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52821-
dc.description.abstract本研究的目的是建立並操作一套於光電半導體產業適用之健康風險評估流程,以評估長期暴露於黃光製程中所使用的化學品可能造成的健康風險。研究最初先以化學品分級管理來篩選出高風險的化學物質。健康風險評估則採用美國環保署(US EPA)的人類健康風險評估流程進行。暴露評估使用了Stoffenmanager暴露模式工具以預測在該暴露情境下員工受暴露的濃度。如果工廠已有收集作業環境測定資料,該數據則可用於建立機率分佈,並將暴露模式的估計濃度作為前提假設分佈,利用馬爾可夫鏈蒙地卡羅法進行貝氏統計更新。最後,再以更新後的分佈計算出每個化學品的風險係數(Hazard Index, HI)。篩選過程中選出常用於黃光製程的有機混合物光阻劑作為主要評估的對象。光阻劑的確切化學組成因為商業機密的關係而資訊有限。本研究根據現有文獻和專利中的描述推測光阻劑裡的潛在化合物以及揮發物。該光阻劑的主要成分為丙二醇單甲醚乙酸酯 (PGMEA)、酚醛樹脂和光活性化合物 (DNQ)。潛在的揮發物包括苯酚,甲酚,苯,甲苯,和二甲苯。個化合物的劑量反應關係經重新評估後依據是否有新的文獻資料來判斷是否需重新評估。各個揮發物的HI 以及其第95個百分位值為苯酚: 2.098 (95%: 6.59)、苯11.08 (95%: 34.75)、甲酚: 0.2868 (95%: 0.9025)、PGMEA: 0.13 (95%: 0.2628), 甲苯: 0.02764 (95%: 0.087)、以及二甲苯: 0.01021 (95%: 0.0.032)。因為PGMEA是唯一有作業環境測定數據的化合物,其他化合物的HI只依排名來評估應優先關注的化合物。其中又以苯酚和苯的HI和致癌風險最高,顯示風險管理者應考慮優先將分配資源來驗證該化合物在工作環境中的暴露情況。zh_TW
dc.description.abstractThe objective of this study was to develop and demonstrate a health risk assessment process for use in the optoelectronic semiconductor industry to assess the potential health risks of chronic exposure to chemicals used in photolithography. Chemical control banding tool was first used to screen out high risk chemicals to be assessed. Human health risk assessment was conducted using the United States Environmental Protection Agency (U.S. EPA) risk assessment process. For exposure assessment, exposure modeling tool Stoffenmanager was used to predict an estimate of worker’s exposure given an exposure scenario. If the factory has collected personal sampling data, the information was used, along with the exposure model estimation as the prior distribution, to set up a Bayesian statistical update using Markov Chain Monte Carlo method. The updated distribution of the estimated exposure was then used to determine the hazard index (HI) of each compound. A photoresist had the greatest risk according to control banding. Its composition and by-products were determined by existing literatures and patents descriptions. Its main composition include Propylene glyco methyl ether acetate (also known as 1-Methoxy-2-propanyl acetate, or PGMEA), novolac resin, and photoactive compound (DNQ). Potential by-products of the photoresist include Phenol, Cresol, Benzene, Toluene, and Xylene. The dose response of each compound was re-assessed and updated when possible. Their reference concentrations and hazard indexes were determined. The resulting HIs and their 95th percentiles for each compound was 2.098 (95%: 6.59) for phenol, 11.08 (95%: 34.75) for benzene, 0.2868 (95%: 0.9025) for cresol, 0.13 (95%: 0.2628) for PGMEA, 0.02764 (95%: 0.087) for xylene, and 0.01021 (95%: 0.0.032) for toluene. Because PGMEA was the only compound that had sampling data, the HI of the other compounds were only ranked to determine compounds that should take precedence validation. Phenol and benzene in particular had the highest scores of HI and cancer risk, suggesting call for further validations.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:29:11Z (GMT). No. of bitstreams: 1
ntu-104-R02847032-1.pdf: 4593269 bytes, checksum: 081b669544880599a2b282469005b1fb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
LIST OF FIGURES 3
LIST OF TABLES 4
LIST OF ABBREVIATIONS 5
1.0 CHAPTER 1 INTRODUCTION 7
1.1 PRACTICUM UNIT FEATURES AND BRIEF INTRODUCTION 7
1.2 FRAMEWORK AND HYPOTHESES 8
1.3 LITERATURE REVIEW 9
1.3.1 Background Survey of Hazards in the Manufacturing Process of LED 9
1.3.2 Chemical Control Banding 11
1.4 RESEARCH PURPOSE AND RESEARCH PROBLEMS 15
2.0 CHAPTER 2 METHODS 16
2.1 SCREENING WITH CHEMICAL CONTROL BANDING 17
2.2 RECOMMENDED EXPOSURE LEVEL (REL) DERIVATION 20
2.2.1 Hazard identification 20
2.2.2 Dose-response assessment 20
2.3 EXPOSURE ASSESSMENT 22
2.3.1 Stoffenmanger 6 22
2.3.2 Bayesian Methodology 25
2.4 RISK CHARACTERIZATION 27
3.0 CHAPTER 3 RESULTS 29
3.1 SCREENING 29
3.2 HEALTH RISK ASSESSMENT OF PHOTORESIST 29
3.2.1 Composition and Potential By-products 29
3.2.2 Hazard Identification 31
3.2.3 Dose-Response Assessment 37
3.2.4 Reference Concentration 44
3.3 EXPOSURE ASSESSMENT OF PHOTORESIST 47
3.3.1 Exposure Scenario 47
3.3.2 Stoffenmanager 48
3.4 BAYESIAN METHODOLOGY 53
3.4.1 With Sampling data 53
3.5 RISK CHARACTERIZATION 54
3.5.1 Derivation of REL 54
3.5.2 Hazard Index (HI) 54
4.0 CHAPTER 4 DISCUSSION 59
4.1 INTERPRETATION OF HIS 59
4.2 RELIABILITY AND SENSITIVITY OF STOFFENMANAGER 60
4.3 LIMITATION OF THE PROCESS 65
4.4 CONCLUSION 67
5.0 REFERENCES 69
6.0 APPENDIX 76
6.1 CONTROL BANDING OF CHEMICALS USED IN PHOTOLITHOGRAPHY 76
6.2 WINBUGS CODE FOR BAYESIAN UPDATE 77
6.3 STOFFENMANAGER REPORT 80
dc.language.isoen
dc.subject健康風險評估zh_TW
dc.subject貝氏統計zh_TW
dc.subjectStoffenmanager 暴露模式zh_TW
dc.subject光阻劑zh_TW
dc.subject黃光製程zh_TW
dc.subjectPhotolithographyen
dc.subjectPhotoresisten
dc.subjectRisk Assessmenten
dc.subjectStoffenmanageren
dc.subjectBayesian Statisticsen
dc.title建立台灣光電半導體產業之員工於製程中受化學品暴露之健康風險評估流程zh_TW
dc.titleDeveloping a Health Risk Assessment Process of Workers Exposed to Chemicals in the Taiwanese Optoelectronic Semiconductor Industryen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林木榮,吳章甫,李文亮
dc.subject.keyword黃光製程,光阻劑,健康風險評估,Stoffenmanager 暴露模式,貝氏統計,zh_TW
dc.subject.keywordPhotolithography,Photoresist,Risk Assessment,Stoffenmanager,Bayesian Statistics,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2015-08-14
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept公共衛生碩士學位學程zh_TW
顯示於系所單位:公共衛生碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved