請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52814完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓玉山(Yu-San Han) | |
| dc.contributor.author | Chih-Tung Shao | en |
| dc.contributor.author | 邵志桐 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:28:52Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-13 | |
| dc.identifier.citation | Aoyama, J. (2009). Life history and evolution of migration in catadromous eels
(genus Anguilla). Aqua-bioscience monographs 2, 1-42. Babbitt, B. (2002). What Goes Up, May Come Down Learning from our experiences with dam construction in the past can guide and improve dam removal in the future. BioScience 52, 656-658. Banerjee, S., Maiti, S. K., Kumar, A. (2015). Metal contamination in water and bioaccumulation of metals in the planktons, molluscs and fishes in Jamshedpur stretch of Subarnarekha River of Chotanagpur plateau, India. Water and Environment Journal 29, 207-213. Barrella, W., Petrere Jr, M. (2003). Fish community alterations due to pollution and damming in Tiete and Paranapanema rivers(Brazil). River Research and Applications 19(1), 59-76. Burkhardt, R.W., Gutreuter, S. (1995). Improving Electrofishing Catch Consistency by Standardizing Power. North American Journal of Fisheries Management 15, 375-381. Busch, W. N., Lary, S. J., Castilione, C. M., McDonald, R. P. (1998). Distribution and availability of Atlantic Coast freshwater habitats for American eel (Anguilla rostrata). Administrative report. Castilla, G., Larkin, K., Linke, J., Hay, G. J. (2009). The impact of thematic resolution on the patch-mosaic model of natural landscapes. Landscape Ecology 24, 15-23. Casselman, J. M. (2003). Dynamics of resources of the American eel, Anguilla rostrata: Declining abundance in the 1990s. In: Aida K, Tsukamoto K, Yamauchi K (eds) Eel biology. Springer, Tokyo. 255-274. Chen, J. Z., Huang, S. L., Han, Y. S. (2014). Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuarine, Coastal and Shelf Science 151, 361-369. Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E. (2004). Review Article Digital change detection methods in ecosystem monitoring: a review International Journal of Remote Sensing 25, 1565-1596. Dekker, W. (2003). Status of the European eel stock and fisheries. In: Aida K, Tsukamoto K, Yamauchi K (eds) Eel biology. Springer, Tokyo. 237-254. Erondu, E. S., Nduka, E. C. (1993). A model for determining the water quality index (WQI) for the classification of the New Calabar river at Aluu‐Port Harcourt, Nigeria. International journal of environmental studies 44(2-3), 131-134. ESRI, (2008). ArcMap 9.3. Environmental Systems Research Institute, Redlands, California, USA. ESRI, (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute Feunteun, E. (2002) Management and restoration of European eel population (Anguilla anguilla): an impossible bargain. Ecological Engineering 18, 575–591 Han, Y. S., Tzeng, W. N. (2006). Use of the sex ratio as a means of resource assessment for the Japanese eel Anguilla japonica: a case study in the Kaoping River, Taiwan. Zoological studies 45, 255-263. Han, Y. S., Tzeng, W. N., Liao, I. C. (2009). Time series analysis of Taiwanese catch data of Japanese glass eels Anguilla japonica: possible effects of the reproductive cycle and El Niño events. Zoological Studies 48, 632-639. Han, Y. S., Hung, C. L., Liao, Y. F., Tzeng,W. N. (2010). Population genetic structure of the Japanese eel Anguilla japonica: panmixia in spatial and temporal scales. Marine Ecology. Progress Series 401, 221-232. Haro, A., Richkus, W., Whalen, K., Busch, W. D., Lary, S., Brush, T., Dixon, D. (2000). Population Decline of the American Eel: Implications for Research and Management. Fisheries 25, 7-16. Hogg, R. S., Coghlan, S. M., Zydlewski, J., Gardner, C. (2015). Fish Community Response to a Small-Stream Dam Removal in a Maine Coastal River Tributary. Transactions of the American Fisheries Society 144, 467-479. Huang, S. L., Chang, M. Y., Wang, Y. T., Tzeng, W. N. (2013). Adverse impacts of urbanization on the diversity integrity of fish larvae and juveniles in a Taiwan river estuary. (Unpublished) Itakura, H., Kitagawa, T., Miller, M. J., Kimura, S. (2014). Declines in catches of Japanese eels in rivers and lakes across Japan: Have river and lake modifications reduced fishery catches? Landscape and Ecological Engineering 11, 147-160. Itakura, H., Kaino, T., Miyake, Y., Kitagawa, T., Kimura, S. (2015). Feeding, condition, and abundance of Japanese eels from natural and revetment habitats in the Tone River, Japan. Environmental Biology of Fishes, 1-18. Jager, H. I., Efroymson, R., Opperman, J. J., Kelly, M. R. (2015). Spatial design principles for sustainable hydropower development in river basins. Renewable and Sustainable Energy Reviews 45, 808-816. Jeremy. (2003). From space to species: ecological applications for remote sensing. Ecology and Evolution 18, 414-423 Kettle, A. J., Bakker, D. C., Haines, K. (2008). Impact of the North Atlantic Oscillation on the trans‐Atlantic migrations of the European eel (Anguilla anguilla). Journal of Geophysical Research: Biogeosciences (2005–2012), 113(G3). Kerr, J. T., Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology and Evolution 18, 299-305. Knights, B. (2003). A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. The Science of the Total Environment 310, 237-244. Kim, H., Kimura, S., Shinoda, A., Kitagawa, T., Sasai, Y., Sasaki, H. (2007) Effect of El Nino on migration and larval transport of the Japanese eel (Anguilla japonica). Journal of Marine Science 64, 1387-1395. Kimura, S., Itakura, H. (2012). Environmental characteristics of the Japanese eel migration from spawning grounds to nursery grounds. The 15th East Asia eel resource consortium Kimura, S., Inoue, T., Sugimoto, T. (2001). Fluctuation in the distribution of lowsalinity water in the NEC and its effect on the larval transport of the Japanese eel. Fish Oceanography 10, 51-60. Lai, Y. C., Tu, Y. T., Yang, C. P., Surampalli, R. Y., Kao, C. M. (2013). Development of a water quality modeling system for river pollution index and suspended solid loading evaluation. Journal of Hydrology 478, 89-101. Limburg, K. E., Waldman, J. R. (2009). Dramatic Declines in North Atlantic Diadromous Fishes. BioScience 59, 955-965. Lucas, M. C., Bubb, D. H., JANG, M. H., Ha, K., Masters, J. E. (2009). Availability of and access to critical habitats in regulated rivers: effects of low‐head barriers on threatened lampreys. Freshwater Biology 54(3), 621-634. Phiri, O., Mumba, P., Moyo, B. H. Z., Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science & Technology 2(3), 237-244. Pine, W. E., Pollock, K. H., Hightower, J. E., Kwak, T. J., Rice, J.A. (2003). A Review of Tagging Methods for Estimating Fish Population Size and Components of Mortality. Fisheries 28, 10-23. Merem, E. C., Twumasi, Y. A. (2008). Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River basin of West Africa. International Journal of Environmental Science and Public Health 5, 464-476. Miller, M. J. (2009) Ecology of Anguilliform leptocephali:Remarkable transparent fish larvae of the ocean sruface layer. Aqua Bioscience Monographs 2, 1-94. Nielsen, J. L. (1998). Scientific Sampling Effects: Electrofishing California's Endangered Fish Populations. Fisheries 23, 6-12. Ohji, M., Harino, H., Arai, T. (2006). Differences in organotin accumulation among ecological migratory types of the Japanese eel Anguilla japonica. Estuarine, Coastal and Shelf Science 69, 270-290. Olang, L. O., Fürst, J. 2011. Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya. Hydrological Processes 25, 80-89. Orrego, R., Adams, S. M., Barra, R., Chiang, G., Gavilan, J. F. (2009). Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile. Hydrobiologia 620(1), 35-46. Seber, G.A. (1982). The estimation of animal abundance and related parameters. 2nd ed. London: Griffin Press. Snyder, D. E. (2003). Electrofishing and its harmful effects on fish (No. USGS/BRD/ITR-2003-0002). Geological Survey Reston Va Biological resources Div. Tatsukawa, K. (2003). Eel resources in East Asia. In: Aida K, Tsukamoto K, Yamauchi K (eds) Eel biology. Springer, Tokyo. Pp293-298 Tatsukawa, K. (2003). Eel Resources in East Asia. TEPA, Taiwan Environmental Protection Administration, (2002). Development of Non-Point Source Pollutant Remedial Strategy, Taipei, Taiwan. Tew, K. S., Han, C. C., Chou, W. R., Fang, L. S. (2002). Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environmental Biology of Fishes 65, 457-462. Tsukamoto, K. (2006). Spawning of eels near a seamount. Nature 439, 929. Tzeng, W. N. (1986). Resources and ecology of the Japanese eel Anguilla japonica elvers in the coastal waters of Taiwan. China Fish. 404, 19-24. UNEP, United Nations Environment Programme, (2006). Water quality for ecosystem and human health. Published by the United Nations Environment Programme Global Environment Monitoring System (GEMS)/Water Programme 132pp Verreault G., Dumont P., Mailhot Y. (2004) Habitat losses and anthropogenic barriers as a cause of population decline for American eel (Anguilla rostrata) in the St. Lawrence watershed, Canada. ICES CM 2004/S:04 Vigo, Spain. Ward, J.V., Stanford, J.A. (1995). The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10, 159-168. Wen, Y., Khosrowpanah, S., Heitz, L. (2011). Land cover change of watersheds in Southern Guam from 1973 to 2001. Environmental Monitoring and Assessment 179, 521-9. Williams, B. K., Nichols, J. D., Conroy, M. J. (2002). Analysis and Management of Animal Populations: Modeling, Estimation, and Decision Making. (Academic Press: San Diego, CA.). Wright, G. V., Wright, R. M., Kemp, P. S. (2015). Impact of Tide Gates on the Migration of Adult European Eels, Anguilla anguilla. Estuaries and Coasts 1-13. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52814 | - |
| dc.description.abstract | 日本鰻是日本、韓國、台灣及中國等地區的重要養殖魚種。雖然日本鰻之人工繁技術已成功,但成本過高無法大量生產,因此目前養殖業者所需之鰻魚苗還是仰賴漁民於河口捕撈。日本鰻資源量從1970年代開始急遽下降,近年資源量明顯不如以往。資源量原因可能是氣候變遷、過度捕撈以及都市及工業不斷擴張、種種人為因素促使鰻魚的自然棲地受到嚴重的破壞。本研究擬探討從1970至2010年代,台灣三條主要河川宜蘭河、鳳山溪以及高屏溪之日本鰻棲地變化,並將棲地變化情形與資源量下降做比較,找出其因果關係。
本研究方法使用衛星遙測技術,將其應用在土地覆蓋之改變 (Land Cover Change, LCC) 以及使用河川汙染指數 (River pollution index, RPI) 進行棲地評估。衛星遙測技術是一項分析棲地的時間空間改變的有效率工具,它可以大範圍紀錄古今的地理樣貌,以提高效率以及精準度以利實驗分析。而本研究區域選定台灣三條河川,由美國地質調查局 (USGS) 下載各河川衛星照片後,再由 Arc-GIS 10分析其棲地改變之情形。再利用行政院環保署 (TEPA) 之長期監測水質資料選取三條河川之河川汙染指數 (RPI) 加入評估。結果顯示,宜蘭河在1970至2010年代當中,棲地品質指數 (Habitat quality index, HQI) 由2.3下降至0.2;鳳山溪在1970至2010年代當中,HQI由5.1下降至1.7;高屏溪在1970至2010年代當中,HQI由73.3下降至6.8。宜蘭河、鳳山溪以及高屏溪在近四十年HQI值分別下降了約92%、68%及91%,顯示台灣河川鰻魚棲地遭到嚴重破壞。 在鰻魚資源量方面,由農委會日本鰻放流計畫中選取2001-2002以及2011-2013年度以標識再捕方式評估河川整體鰻魚資源量,結果顯示宜蘭河現有資源量約為2429尾,鳳山溪現有資源量約為5495尾,而高屏溪現有資源量約為12016尾。計算整體資源量後將其與HQI值進行分析,發現兩者呈現顯著正相關(p <0.05)。 結論而言, HQI值在未來可以參考作一個快速且成本低的鰻魚資源量評估方式。 | zh_TW |
| dc.description.abstract | The Japanese eel Anguilla japonica is an important aquaculture species in Japan, Korea, Taiwan and China. Although artificial propagation has been successfully developed in Japan, the cost is still too high to reproduce glass eel for aquaculture. The glass eels needed are still for aquaculture completely depending on the wild stock caught at river mouths. However, eel stocks have been rapidly declining since the 1970s. Furthermore, with urbanization and constant expansion of industrialization in these countries, the natural habitats of eels have been severely damaged. In this study, Arc GIS and River Pollution Index (RPI) were integrated to establish the long-term changes (between 1970-2010) of river habitat quality index (HQI). The result show that during 1970-2010 the HQI of the Yilan River dreceased from 2.3 to 0.2, the HQI of the Fengshan River decreased from 5.1 to 1.7 and the HQI of the Kaoping Rivers decreased from 73.3 to 6.8. The HQIs of Yilan River, Fengshan River and Kaoping River decrease 92%, 68%, and 91%, respectively, in the past 4 decades. The quality of eel river habitat has been significantly decreased.
To estimate the eel population size, according to the restocking projects of the Japanese eel from the Council of Agriculture during recent years, we collected the available data for the years 2001-2002 and 2011-2013 and use Chapman’s mark-recapture method to calculate the eel abundance. It was found that the total population size were around 2429 eels in Yilan River, 5495 eels in Fengshan River and 12016 eels in Kaoping River. The Pearson’s correlation analysis indicated that the relationships between HQI and the amount of resources in the existing rivers was significantly positively correlated (p<0.05). In conclusion, HQI could be used for the evaluation why fast and large-scale eel abundance evaluation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:28:52Z (GMT). No. of bitstreams: 1 ntu-104-R02b45011-1.pdf: 6852067 bytes, checksum: 15e392eaeff3276dd0e4fd01e3412ac6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract: iv Contents vi Figure legends viii Table contents x Introduction 1 Materials and Methods 7 Study area 7 Landscape image collection and processing 7 Habitat quality index assessing 8 Eel resource data 9 Results 10 Remote sensing image 10 Yilan River (宜蘭河) : 10 Fengshan River (鳳山溪) : 10 Kaoping River (高屏溪) 11 Habitat Quality index 11 Eel resource data 12 Discussion 15 Long-term habitat change 15 Habitat Quality Index 17 Eel resource 18 Conclusions 21 Reference 22 | |
| dc.language.iso | en | |
| dc.subject | 衛星遙測技術 | zh_TW |
| dc.subject | 鰻魚資源量 | zh_TW |
| dc.subject | 棲地破壞 | zh_TW |
| dc.subject | 日本鰻 | zh_TW |
| dc.subject | 棲地品質指數 | zh_TW |
| dc.subject | eel stock size | en |
| dc.subject | habitat destruction | en |
| dc.subject | Japanese eel | en |
| dc.subject | satellite remote sensing | en |
| dc.subject | habitat quality index | en |
| dc.title | 宜蘭河、鳳山溪及高屏溪棲地品質的長期變遷與日本鰻資源下降的關係之探討 | zh_TW |
| dc.title | Long term changes of habitat quality and its relation to Japanese eel Anguilla japonica of population decline in Yilan, Fengshan and Kaoping Rivers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾萬年(Wann-Nian Tzeng),王佳惠(Chia-Hui Wang),黃祥麟(Shiang-Lin Huang) | |
| dc.subject.keyword | 棲地破壞,日本鰻,衛星遙測技術,棲地品質指數,鰻魚資源量, | zh_TW |
| dc.subject.keyword | habitat destruction,Japanese eel,satellite remote sensing,habitat quality index,eel stock size, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
