Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐濟泰
dc.contributor.authorShuen-Yao Yangen
dc.contributor.author楊舜堯zh_TW
dc.date.accessioned2021-06-15T16:28:49Z-
dc.date.available2020-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citation再生能源行動網。生質能暨生質燃料技術。Retrieved July 4, 2015, from http://www.re.org.tw/ProRE/introduction.aspx?SEQNO=11
再生能源發展條例。中華民國98年。經濟部能源局。
姜樹興。2009。動物營養學原理。華香園出版社。
楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。
盧乙嘉、宋聖榮。2012。未來能源之星-地熱。科學發展。475期。54-61頁。
劉美秀、蔡馥嚀。2010。農業廢棄物生產木質分解酵素之研究。農業生技產業季刊。NO. 24。53-58頁。
Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861.
Appels, L., J. Baeyens, J. Degrève, and R. Dewil. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34: 755-781.
Boerjan, W., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519-546.
Chen, H. Z. 2014. Biotechology of Lignocellulose. Springer.
De Vrieze, J., T. Hennebel, N. Boon, and W. Verstraete. 2012. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 112: 1-9.
Ellabban, O., H. Abu-Rub, and F. Blaabjerg. 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39: 748-764.
Ferry, J. G. 2010. The chemical biology of methanogenesis. Planetary and Space Science 58: 1775-1783.
Gupta, R., G. Mehta, Y. P. Khasa, and R. C. Kuhad. 2011. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22: 797-804.
Hamas, M. A., and I. A. Khattab. 1981. Effect of the combustion process on the structure of rice hull silica. Thermochim. Acta 48: 343-349.
Iannotti, E. L., D. Kafkewitz, M. J. Wolin, and M. P. Bryant. 1973. Glucose fermentation products of Ruminococcus albus in continuous culture with Vibrio succinogenes changes caused by interspecies transfer of H2. J. Bacteriol. 114(3): 1231-1240.
Jetten, M. S., A. J. Stams, and A. J. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73: 339-344.
Khan, A. W. 1980. Degradation of cellulose to methane by a coculture of Acetivibrio cellulolyticus and Methanosarcina barkeri. FEMS Microbiol. Lett. 9: 233-235.
Klocke, M., E. Nettmann, I. Bergmann, K. Mundt, K. Souidi, J. Mumme, and B. Linke. 2008. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst. Appl. Microbiol. 31: 190-205.
Laube, V. M., and S. M. Martin. 1981. Conversion of Cellulose to Methane and Carbon Dioxide by Triculture of Acetivibrio cellulolyticus, Desulfovibrio sp., and Methanosarcina barkeri. Appl. Environ. Microbiol. 42(3): 413-420.
Mackie, R. I., C. S. McSweeney, and R. I. Aminov. 2013. Rumen. eLS.
Mah, R., R. Hungate, and K. Ohwaki. 1976. Acetate, a key intermediate in methanogenesis. In: Seminar on Microbial Energy Conversion. p 97-106.
McCarty, P. L. 1964. Anaerobic waste treatment fundamentals. Public works 95: 107-112.
Miron, J., M. T. Yokoyama, and R. Lamed. 1989. Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria. Appl. Environ. Microbiol. 32: 218-222.
Mountfort, D. O., R. A. Asher, and T. Bauchop. 1982. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44: 128-134.
Nijaguna, B. T. 2002. Biogas Technology. New Age.
Ntaikou, I., H. N. Gavala, M. Kornaros, and G. Lyberatos. 2008. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. International Journal of Hydrogen Energy 33: 1153-1163.
Olofsson, K., M. Bertilsson, and G. Liden. 2008. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1: 7.
Ransom-Jones, E., D. L. Jones, A. J. McCarthy, and J. E. McDonald. 2012. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb. Ecol. 63: 267-281.
Reddy, N., and Y. Yang. 2005. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23: 22-27.
REN21. 2014. Renewables 2014 Global Status Report.
Rosa, S. M. L., N. Rehman, M. I. G. de Miranda, S. M. B. Nachtigall, and C. I. D. Bica. 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87: 1131-1138.
Rotaru, A-E., P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, and D. R. Lovley. 2014. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7: 408-415.
Rozainee, M., S. P. Ngo, A. A. Salema, K. G. Tan, M. Ariffin, and Z. N. Zainura. 2008. Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash. Bioresour. Technol. 99: 703-713.
Rubin, E. M. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845.
Singh, P., A. Suman, P. Tiwari, N. Arya, A. Gaur, and A. K. Shrivastava. 2007. Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology 24: 667-673.
Staley, B. F., F. L. de Los Reyes, 3rd, and M. A. Barlaz. 2011. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl. Environ. Microbiol. 77: 2381-2391.
Taherzadeh, M. J., and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9: 1621-1651.
Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews. Microbiology 6: 579-591.
Thurston, B., K. A. Dawson, and H. J. Strobel. 1994. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol. 60: 1087-1092.
van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.
Wilson, D. B. 2009. Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16: 723-727.
Zhang, M., G. Zhang, P. Zhang, S. Fan, S. Jin, D. Wu, and W. Fang. 2014. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor. Bioresour. Technol. 166: 606-609.
Zheng, Y., J. Zhao, F. Xu, and Y. Li. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science 42: 35-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52813-
dc.description.abstract氣候變遷、能源危機和化石燃料枯竭促使了再生能源的發展。甲烷是一個有潛力的燃料而且它在所有碳氫化合物中具有最高氫碳比,相對於石油為更乾淨且環保的燃料。甲烷是在沼澤、垃圾掩埋場和動物的腸胃道等厭氧環境中由甲烷菌所產生。瘤胃含有大量的微生物所以對草料很強的消化能力。它同樣在發酵的時後會產生可觀量的甲烷。本研究之目的是將來自瘤胃內的纖維分解菌和甲烷菌共培養於農業廢棄物上產生甲烷,以期作為一個產生再生能源的方法。
Ruminococcus albus 7 (ATCC 27210) 是瘤胃內主要的纖維分解菌之一,能夠產生乙酸、氫氣和二氧化碳。Methanosarcina barkeri (BCRC 19175) 是存在於很多厭氧環境的甲烷菌,能夠使用氫氣、二氧化碳和乙酸作為能量來源生長。在本實驗中,選擇稻稈、玉米稈和粗糠,作為基質單獨培養R. albus 7和其與M. barkeri共培養。在不同時間點測pH值、產氣體積和收集氣體、培養液和固形物樣品然後分析氣體組成、揮發性脂肪酸和纖維組成。結果中,R. albus 7能夠消化玉米稈和稻稈,但是對於粗糠的消化能力很低。R. albus 7和M. barkeri共培養於稻稈可以顯著提高纖維素的消化率和乙酸濃度 (P < 0.05)。在產氣部分,M. barkeri的存在能夠降低氫氣和二氧化碳的產量及產生甲烷。共培養於稻稈、玉米稈和粗糠中的甲烷產率分別為0.4 mmol/g-DM、0.3 mmol/g-DM和0.13 mmol/g-DM。但甲烷只有在發酵前期產生,而且 M. barkeri生長不理想。
根據本研究結果,以R. albus 7和M. barkeri共培養將部分農業廢棄物轉換成甲烷之效果不理想。
zh_TW
dc.description.abstractClimate change, energy crisis and fossil fuel depletion are driving the development of renewable energy. Methane is one of the potential fuel and it has the highest hydrogen to carbon ratio in all hydrocarbons, is a relatively clean fuel and more eco-friendly than oil. Methane is produced by methanogens in the anaerobic environment such as, swamps, land fills and the intestinal tracts of animals. Rumen has a great ability to digest grass by its abundant microorganisms. It also produce considerable methane during fermenting. The aim of the present study is to coculture the rumen cellulolytic bacteria and methanogen on the agricultural wastes and produce methane as a way to make renewable energy.
Ruminococcus albus 7 (ATCC 27210) is one of the main fibrolytic bacteria in rumen and produces acetic acid, hydrogen and carbon dioxide. Methanosarcina barkeri (BCRC 19175) presences in many anaerobic environment and it can use hydrogen, carbon dioxide and acetic acid as energy sources for growing. In this experiment we chose rice straw, corn stover and rice hull as the biomass for culturing R. albus 7 alone and its coculturing with M. barkeri. We measured the pH, gas production and collected the gases, broth and solids and analyzed the gas compositions, volatile fatty acids and fiber compositions at different time points. In our results, R. albus 7 was able to digest corn stover and rice stover but had a low ability to digest rice hull. Coculturing with M. barkeri could promote the cellulose digestibility and the concentration of acetic acid on rice straw significantly (P < 0.05), but not on corn stover. According to the gas product, the presence of M. barkeri decreased yield of hydrogen and carbon dioxide and produced methane. The methane yield of coculturing on rice straw, corn stover and rice hull were 0.4 mmol/g-DM, 0.3 mmol/g-DM and 0.13 mmol/g-DM, respectively. But the methane was only produced at the early stage of fermenting and the growth of M. barkeri wasn’t ideal.
The current research demonstrated that the result of coculturing R. albus 7 and M. barkeri to turn the agricultural wastes to methane is not ideal.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:28:49Z (GMT). No. of bitstreams: 1
ntu-104-R02626027-1.pdf: 1328014 bytes, checksum: 7963076f0fdfd58d70d30bb69ebc6f6a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents圖次 II
表次 IV
中文摘要 V
英文摘要 VI
壹、文獻回顧 1
貳、材料與方法 18
參、結果 41
肆、討論 61
伍、結論 66
陸、參考文獻 67
dc.language.isozh-TW
dc.title瘤胃纖維分解菌和甲烷菌共培養於農業廢棄物產製甲烷之可行性評估zh_TW
dc.titleFeasibility Evaluation of Methane Production from Rumen Fibrolytic Bacteria and Methanogen Coculturing on Agricultural Wastesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李春芳,蘇忠楨,王翰聰
dc.subject.keyword甲烷,農業廢棄物,瘤胃纖維分解菌,甲烷菌,共培養,zh_TW
dc.subject.keywordmethane,agricultural waste,rumen fibrolytic bacteria,methanogen,coculture,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2015-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved