Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorHsin-Han Leeen
dc.contributor.author李欣翰zh_TW
dc.date.accessioned2021-05-15T17:54:58Z-
dc.date.available2015-07-29
dc.date.available2021-05-15T17:54:58Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citation[1] K. V. Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)
[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Phys. Rev. Lett. 48 (1559)
[3] Thouless, D. J., M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)
[4] Kane, C. L., and E. J. Mele. Phys. Rev. Lett. 95, 226801 (2005)
[5] Kane, C. L., and E. J. Mele. Phys. Rev. Lett. 95, 146802 (2005)
[6] Fu, L., and C. L. Kane. Phys. Rev. B 74, 195312 (2006)
[7] Fu, L., and C. L. Kane. Phys. Rev. B 76, 045302 (2007)
[8] Fukui, T., and Y. Hatsugai. J. Phys. Soc. Jpn. 76, 053702 (2007)
[9] Moore, J. E., and L. Balents. Phys. Rev. B 75, 121306 (2007)
[10] Fukui, T., T. Fujiwara, and Y. Hatsugai. J. Phys. Soc. Jpn. 77, 123705 (2008)
[11] Qi, X. L., T. L. Hughes, and S. C. Zhang. Phys. Rev. B 78, 195424 (2008)
[12] Andrey E. Miroshnichenko, Sergej Flach, and Yuri S. Kivshar. Rev. Mod. Phys. 82,2257
[13] D. Vasileska and S. M. Goodnick. l, Computational Electronics. Morgan and Claypool Publishers, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5280-
dc.description.abstract近年來,拓樸絕緣體已成為一個很有潛力的研究領域,它有可能是製作新一代自旋電子學元件和量子資訊的材料。在理論方面,量子力學的拓樸學應用有許多階段的研究。拓樸絕緣體的內部性質為一般的絕緣體,但是邊緣(表面)卻是導體,這是由於固體內部的電子能帶結構所決定的二維拓樸絕緣體具有特殊的邊緣(表面)態,這種特殊的量子態是由強自旋軌道耦合下所產生,而它的電導取決於邊緣態的數目。在二為拓樸絕緣體外加電場的情況下,兩個邊緣態上的電流會有相反的自旋,稱為量子自旋霍爾效應。一般認為,沿著邊緣狀態的電子不能被非磁性雜質散射,這是由於時間反演對稱性所導致。
在本論文中,我們考慮兩種對量子自旋霍爾效應影響的作用。首先是幾何形狀的影響,我們計算了兩種分支形狀的拓樸絕緣體的電流和自旋極化。我們的結果發現,分支狀的結構將增強自旋極化電流。第二是非磁性雜質的影響,我們研究非磁性雜質加入拓樸絕緣體的傳輸性質。雖然拓樸絕緣體的時間反演對稱性會保護邊緣態的電子不會被非磁性雜質散射,但邊緣的電子會穿隧到另一側的邊緣,導致電子的穿透係數下降。對於雜質的小樣本,傳輸係數甚至可以下降到零。最後,考慮分叉結構和雜質所構成的元件中,我們發現了電子同時擁有量子穿隧和量子干涉的效應,而這兩種效應會影響電子的傳輸方向。從這些結果推得此結構可以成為一種電子元件,藉由閘電位控制電流的開關,且具有自旋性質。以上這些性質皆是由Landauer formula進行數值研究。
zh_TW
dc.description.abstractRecently, topological insulator is an emerged field in condensed matter physics and material science; it has been regarded as the materials which have potential applicate in the new generation of spintronics devices and quantum computer. For the theory, there are many phase and topology studies in the quantum mechanics in this topic. The topological insulator is the material that is insulating in the bulk but conducting on the edge (or surface). In two dimension, it exhibits the quantum spin Hall effect. The effect is caused by the strong spin-orbit coupling and the spin Hall conductance is determined by the number of edge state. It is believed that electron transport along the edge states cannot be backscattered by the non-magnetic impurity due to the time reversal symmetry.
In the thesis, we study the transport property of quantum spin Hall effect in defined geometries and effect caused by the impurities. First, we calculated the current and polarization on two types of branching topological insulators. Our results indicate that the branch structure will enhance the spin polarizing current. Second, the influences of impurity on the electron density and transmission of a finite topological insulator sample are studied. Although the time-reversal symmetry topology insulators will protect the edges of the electronic states cannot be scattering by non-magnetic impurity, however, electrons from one side can tunnel into the other side and the quantized conductance can be broken down. For a small sample with impurity, the transmission coefficient can even drop to zero for the crosswalk between the helical edge states at two sample sides. At last, a device is designed based in those two influences. We found that quantum tunneling and quantum interference occur in the same time, and both effects influence the direction of the electron. Those properties are studied numerically in the framework of Landauer Formalism.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:54:58Z (GMT). No. of bitstreams: 1
ntu-103-D98222018-1.pdf: 6542633 bytes, checksum: 03922b850bde54c665179abaeb218e6f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Green Function in Quantum System 6
2.1 Tight-Binding Model building the Hamiltonian . . . . . . . . . . . . . . 6
2.2 Green Function and Local Density of State . . . . . . . . . . . . . . . . . 8
2.3 Landauer Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Effective Hamiltonian and Self Energy . . . . . . . . . . . . . . 11
2.3.2 Surface Green function for Semi-Infinite System . . . . . . . . . 12
2.3.3 Landauer-Buttiker Formula . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Landauer-Keldysh Formalism . . . . . . . . . . . . . . . . . . . 14
3 Topological Insulator 17
3.1 The Topology and Band Structure . . . . . . . . . . . . . . . . . . . . . 19
3.2 Topology and Topological Insulator . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Berry Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Integer Quantum Hall Effect and TKNN Invariant (Chern Number) 21
3.2.3 Z2 Topological Insulator . . . . . . . . . . . . . . . . . . . . . . 22
3.3 2D Topological Insulator Material . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Zigzag Honeycomb Nano-Ribbon . . . . . . . . . . . . . . . . . 25
3.3.2 HgTe/CdTe Quantum Well . . . . . . . . . . . . . . . . . . . . . 27
4 Spin Transport Calculation for Branch-Shaped 2D Topological Insulator 30
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The Investigated Systems in ZNR . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Fork-Shaped ZNR . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 H-shaped ZNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 The Investigated Systems in HgTe/CdTe Quantum Well . . . . . . . . . . 36
4.3.1 Fork-shaped HgTe/CdTe Quantum Well . . . . . . . . . . . . . . 36
4.3.2 H-shaped HgTe/CdTe Quantum Well . . . . . . . . . . . . . . . 38
4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Impurity Influence in Quantum Spin Hall Transport 44
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Impurity Potentail Matrix in Tight-Binding Model . . . . . . . . . . . . . 48
5.2.1 Clear Limit of Two Samples . . . . . . . . . . . . . . . . . . . . 49
5.3 In-gap Bound States Induced by Impurity . . . . . . . . . . . . . . . . . 50
5.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 51
6 The impurity in H-shaped Topological Insulator Device 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Clear Limit of Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Impurity Bound State and Interference Resonance . . . . . . . . . . . . . 59
x
6.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 61
7 Summary and Outlook 64
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
dc.language.isoen
dc.subject量子自旋霍爾效應zh_TW
dc.subject自旋軌道耦合zh_TW
dc.subject量子傳輸zh_TW
dc.subject格林函數zh_TW
dc.subject碲化汞─碲化鎘量子井zh_TW
dc.subject拓樸絕緣體zh_TW
dc.subject鋸齒型邊界二維蜂巢晶格帶zh_TW
dc.subjectGreen functionen
dc.subjectquantum transporten
dc.subjectspin-orbit couplingen
dc.subjectzigzag honeycomb nano-ribbonen
dc.subjectHgTe/CdTe quantum wellen
dc.subjectspin Hall effecten
dc.subjectquantumen
dc.subjecttopological insulatoren
dc.title二維拓樸絕緣體元件的量子傳輸zh_TW
dc.titleQuantum Transport in 2D Topological Insulator Deviceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee胡崇德(Chong-Der Hu),林育中(Yeu-Chung Lin),沈順清(Shun-Qing Shen(),關肇正(Chao-Cheng Kaun),陳松賢(Son-Hsien Chen)
dc.subject.keyword拓樸絕緣體,量子自旋霍爾效應,自旋軌道耦合,量子傳輸,格林函數,鋸齒型邊界二維蜂巢晶格帶,碲化汞─碲化鎘量子井,zh_TW
dc.subject.keywordtopological insulator,quantum,spin Hall effect,spin-orbit coupling,quantum transport,Green function,zigzag honeycomb nano-ribbon,HgTe/CdTe quantum well,en
dc.relation.page66
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf6.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved