請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52807
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周元昉(Yuan-Fang Chou) | |
dc.contributor.author | Chung-Husan Huang | en |
dc.contributor.author | 黃崇軒 | zh_TW |
dc.date.accessioned | 2021-06-15T16:28:33Z | - |
dc.date.available | 2015-08-17 | |
dc.date.copyright | 2015-08-17 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-13 | |
dc.identifier.citation | [1] D. S. Chitore, S. C. Saxena, and P. Mukhopadhyay, “Electronic model of the middle ear.,” Med. Biol. Eng. Comput., vol. 21, no. 2, pp. 176–178, 1983.
[2] A. Eiber and W. Schiehlen, “Reconstruction of hearing by mechatronical devices,” Rob. Auton. Syst., vol. 19, no. 2, pp. 199–204, 1996. [3] M. Kringlebotn, “Network model for the Human middle ear,” Scand. Audiol., vol. 17, no. 2, pp. 75–85, 1988. [4] P. Parent and J. B. Allen, “Time-domain ‘wave’ model of the human tympanic membrane,” Hear. Res., vol. 263, no. 1–2, pp. 152–167, 2010. [5] J. Pascal, a Bourgeade, M. Lagier, and C. Legros, “Linear and nonlinear model of the human middle ear.,” J. Acoust. Soc. Am., vol. 104, no. 3 Pt 1, pp. 1509–1516, 1998. [6] J. Zwislocki, “Analysis of the Middle-ear function . Part I : Input impedance,” The Journal of the Acoustical Society of America, vol. 34 ,no. 8 Pt 2,pp. 1514–1523, 1962. [7] C. Stieger, H. Bernhard, D. Waeckerlin, M. Kompis, J. Burger, and R. Haeusler, “Human temporal bones versus mechanical model to evaluate three middle ear transducers.,” J. Rehabil. Res. Dev., vol. 44, no. 3, pp. 407–415, 2007. [8] W. F. Decraemer, J. J. J. Dirckx, and W. R. J. Funnell, “Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner,” JARO - J. Assoc. Res. Otolaryngol., vol. 4, no. 2, pp. 250–263, 2003. [9] P. Ferris and P. J. Prendergast, “Middle-ear dynamics before and after ossicular replacement,” J. Biomech., vol. 33, no. 5, pp. 581–590, 2000. [10] W. R. Funnell, “On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum.,” J. Acoust. Soc. Am., vol. 73, no. 5, pp. 1657–1661, 1983. [11] W. R. Funnell, W. F. Decraemer, and S. M. Khanna, “On the damped frequency response of a finite-element model of the cat eardrum.,” J. Acoust. Soc. Am., vol. 81, no. 6, pp. 1851–1859, 1987. [12] W. R. Funnell and C. a Laszlo, “Modeling of the cat eardrum as a thin shell using the finite-element method.,” The Journal of the Acoustical Society of America, vol. 63, no. 5. pp. 1461–1467, 1978. [13] R. Z. Gan, B. Feng, and Q. Sun, “Three-dimensional finite element modeling of human ear for sound transmission,” Ann. Biomed. Eng., vol. 32, no. 6, pp. 847–859, 2004. [14] R. Z. Gan, Q. Sun, R. K. Dyer, K.-H. Chang, and K. J. Dormer, “Three-dimensional modeling of middle ear biomechanics and its applications.,” Otol. Neurotol., vol. 23, no. 3, pp. 271–280, 2002. [15] T. Koike, H. Wada, and T. Kobayashi, “Modeling of the human middle ear using the finite-element method.,” J. Acoust. Soc. Am., vol. 111, no. 3, pp. 1306–1317, 2002. [16] C.-F. Lee, P.-R. Chen, W.-J. Lee, J.-H. Chen, and T.-C. Liu, “Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.,” Laryngoscope, vol. 116, no. 5, pp. 711–716, 2006. [17] Q. Sun, R. Z. Gan, K.-H. Chang, and K. J. Dormer, “Computer-integrated finite element modeling of human middle ear.,” Biomech. Model. Mechanobiol., vol. 1, no. 2, pp. 109–122, 2002. [18] H. Wada, T. Metoki, and T. Kobayashi, “Analysis of dynamic behavior of human middle ear using a finite-element method.,” J. Acoust. Soc. Am., vol. 92, no. 6, pp. 3157–3168, 1992. [19] C. Weistenhofer and H. Hudde, “Determination of the shape and inertia properties of the human auditory ossicles,” Audiol. Neuro-Otology, vol. 4, no. 3–4, pp. 192–196, 1999. [20] K. R. Williams and T. H. J. Lesser, “A finite element analysis of the natural frequencies of vibration of the human tympanic membrane.Part I.,” Br. J. Audiol., vol. 24, no. 5, pp. 319–327, 1990. [21] T. H. Lesser and K. R. Williams, “The tympanic membrane in cross section: a finite element analysis.,” J. Laryngol. Otol., vol. 102, no. 3, pp. 209–214, 1988. [22] W. J. Yao, H. C. Zhou, B. L. Hu, X. S. Huang, and X. Q. Li, “Research on ossicular chain mechanics model,” Math. Probl. Eng., vol. 2010, 2010. [23] F. Bohnke, T. Bretan, S. Lehner, and T. Strenger, “Simulations and measurements of human middle ear vibrations using multi-body systems and laser-doppler vibrometry with the floating mass transducer,” Materials (Basel)., vol. 6, no. 10, pp. 4675–4688, 2013. [24] T. Wright, The linear and nonlinear biomechanics of the middle ear, University dissertation from Dept. of Otolaryngology, University Hospital, S22185 Lund. 2005. [25] G. Volandri, F. Di Puccio, P. Forte, and S. Manetti, “Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear,” Med. Eng. Phys., vol. 34, no. 9, pp. 1339–1355, 2012. [26] H. Chen, T. Okumura, S. Emura, and S. Shoumura, “Scanning electron microscopic study of the human auditory ossicles,” Ann. Anat., vol. 190, no. 1, pp. 53–58, 2008. [27] T. Cheng and R. Z. Gan, “Mechanical properties of stapedial tendon in human middle ear.,” J. Biomech. Eng., vol. 129, no. 6, pp. 913–918, 2007. [28] T. Cheng and R. Z. Gan, “Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon.,” Med. Eng. Phys., vol. 30, no. 3, pp. 358–366, 2008. [29] D. J. Kelly, P. J. Prendergast, and a W. Blayney, “The effect of prosthesis design on vibration of the reconstructed ossicular chain acomparative finite element analysis of four prostheses,” Heal. (San Fr.), pp. 1–28, 2001. [30] T. Cheng, C. Dai, and R. Z. Gan, “Viscoelastic properties of human tympanic membrane,” Ann. Biomed. Eng., vol. 35, no. 2, pp. 305–314, 2007. [31] N. Hato, S. Stenfelt, and R. L. Goode, “Three-dimensional stapes footplate motion in human temporal bones,” Audiol. Neuro-Otology, vol. 8, no. 3, pp. 140–152, 2003. [32] Y.-F. Chou and L.-C. Wang, “On the Modal Testing of Microstructures: Its Theoretical Approach and Experimental Setup,” Journal of Vibration and Acoustics, vol. 123, no. 1. p. 104, 2001. [33] 周元昉,沈一羽, 實驗振態分析理論之研究, 國立台灣大學機械系講義, 1984. [34] J.-S. Tsai and Y.-F. Chou, “The identification of dynamic characteristics of a single bolt joint,” J. Sound Vib., vol. 125, no. 3, pp. 487–502, 1988. [35] 黃千才, 光電式耳膜附著助聽器之動態行為研究, 國立台灣大學機械所碩士論文, 2013. [36] B. Feng and R. Z. Gan, “A lumped-parameter mechanical model of human ear for sound transmission,” Proc. Second Jt. 24th Annu. Conf. Annu. Fall Meet. Biomed. Eng. Soc. [Engineering Med. Biol.], vol. 1, pp. 2–3, 2002. [37] M. Ferrazzini, Virtual middle ear: A dynamical mathematical model based on the finite element, Doctoral Theses, E.T.H., 2003. [38] A. Eiber and H. G. Freitag, “On simulation models in otology,” Multibody Syst. Dyn., vol. 8, no. 2, pp. 197–217, 2002. [39] “Laboratory of Biomedical Physics,” University of Antwerp - Faculty of Science. [Online]. Available: http://www.ua.ac.be/main.aspx?c=.BIMEF&n=71225. [40] T. Cheng and R. Z. Gan, “Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis,” Biomech. Model. Mechanobiol., vol. 7, no. 5, pp. 387–394, 2008. [41] T. Cheng, Mechanical properties of human middle ear tissues, PhD Thesis, University of oklahoma, 2007. [42] R. Z. Gan, M. W. Wood, and K. J. Dormer, “Human middle ear transfer function measured by double laser interferometry system.,” Otol. Neurotol., vol. 25, no. 4, pp. 423–435, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52807 | - |
dc.description.abstract | 本文首先由人類聽小骨的剛體模型和韌帶與肌腱等的彈簧模型建立中耳的無阻尼數學模型,接著推導出中耳之運動方程式後解出無阻尼之固有頻率和振形,利用這些固有頻率和振形加入各個模態之阻尼比後推導出人類中耳的頻率響應函數,將調校模態阻尼比的結果和文獻上的實驗數據比較後獲得各個模態適合的阻尼比,如此可獲得符合中耳動態特性的模態參數以及頻率響應函數。
接著將已研發之光電式耳膜附著助聽器的數學模型和所獲得之中耳參數組合。利用次結構合成法將助聽器和中耳之頻率響應函數合成得到助聽器施力傳至內耳位移的頻率響應函數,最後將力和位移的關係換算成電流和位移之關係,即可據以設定助聽器需提供多少電流來達成聽力補償之效果。 | zh_TW |
dc.description.abstract | This study created a 3D multi-body model of human middle ear structure. First, the ossicels was considered a rigid body and soft tissues was considered a composition of linear spring. Secondly, we ignored damping effect and external force to derive the equation of motions of whole system. Then solved eigenvalue problem and using these natural frequencies、mode shape and damping ratio of each mode, so we can derive the frequency response function of the middle ear. Finally, we tuned the damping ratio of each mode to fit the frequency response function from paper’s experimental data, as a result, we got the frequency response function of the middle ear by theoretical analysis.
We used substructure synthesis method to combine the frequency response function of the middle ear and the frequency response function of hearing aid. We obtained the purpose of this study by combining the frequency response function of the two structures. Then, by transforming the electromagnetic force to current hearing aid, we got the frequency response function between the electromagnetic force and current. According to this function we can achieve the settings of hearing aid. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:28:33Z (GMT). No. of bitstreams: 1 ntu-104-R02522529-1.pdf: 4263190 bytes, checksum: 05fc5dcd7a3be1d483c7ac9d9773d11c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1研究動機 1 1.2 文獻回顧 2 1.3本文內容 4 第二章 中耳之數學模型 6 2.1人類之中耳 6 2.2耳膜 7 2.3聽小骨 7 2.4韌帶和肌腱 8 2.5關節和系統之自由度 9 2.6建立座標系 9 2.7整合中耳各個結構之數學模型 10 第三章 中耳之模態參數 12 3.1拉格朗日方程式 12 3.2動能與位能 13 3.3中耳之固有頻率及振形 15 3.4中耳之頻率響應函數 16 3.5助聽器之頻率響應函數 18 第四章 助聽器附著耳膜後頻率響應函數 21 4.1中耳之頻率響應函數 21 4.2助聽器之頻率響應函數 22 4.3頻率響應函數之合成 22 4.4中耳之特性 26 第五章 結論與建議 28 參考文獻 29 附表 33 附圖 39 附錄一 68 | |
dc.language.iso | zh-TW | |
dc.title | 助聽器附著於耳膜後中耳頻率響應函數之研究 | zh_TW |
dc.title | Research on frequency response function of the middle ear after hearing aid attached to the eardrum | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪振發(Hong-Zhen Fa),王立昇(Li-Sheng Wang) | |
dc.subject.keyword | 聲音傳遞,中耳,頻率響應函數,助聽器, | zh_TW |
dc.subject.keyword | Sound transmission,Middle ear,Frequency response function,Hearing aid, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。