Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52796
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
dc.contributor.author | Chao-Mao Hsieh | en |
dc.contributor.author | 謝朝茂 | zh_TW |
dc.date.accessioned | 2021-06-15T16:28:03Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2015-08-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-13 | |
dc.identifier.citation | 1. Singh, R.K., A.M. Sharma, and B. Das, Quantitative phase-contrast imaging through a scattering media. Optics Letters, 2014. 39(17): p. 5054-5057.
2. Ishiwata, H., M. Itoh, and T. Yatagai. Retardation-modulated differential interference microscope and its application to 3D shape measurement. 1996. 3. Kostyk, P., S. Phelan, and M. Xu. Cell cycle imaging with quantitative differential interference contrast microscopy. in SPIE BiOS. 2013. International Society for Optics and Photonics. 4. Jafarfard, M.R., et al., Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness. Optics letters, 2014. 39(10): p. 2908-2911. 5. Bhaduri, B., et al., Diffraction phase microscopy with white light. Optics letters, 2012. 37(6): p. 1094-1096. 6. Pham, H., et al., Spectroscopic diffraction phase microscopy. Optics letters, 2012. 37(16): p. 3438-3440. 7. Pham, H.V., et al., Real time blood testing using quantitative phase imaging. PLoS One, 2013. 8(2): p. e55676. 8. Graf, R.N., et al., Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations. Journal of Biomedical Optics, 2009. 14(6): p. 064030-064030-8. 9. Choi, W., et al., Tomographic phase microscopy. Nat Meth, 2007. 4(9): p. 717-719. 10. Organization, W.H. The top 10 causes of death. 2014. 11. Wang, P., et al., Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis. Optics letters, 2010. 35(17): p. 2840-2842. 12. Hsu, W.-C., et al., Tomographic diffractive microscopy of living cells based on a common-path configuration. Optics letters, 2014. 39(7): p. 2210-2213. 13. Mir, M., et al., Optical measurement of cycle-dependent cell growth. Proceedings of the National Academy of Sciences, 2011. 108(32): p. 13124-13129. 14. Popescu, G., et al., Optical imaging of cell mass and growth dynamics. American Journal of Physiology-Cell Physiology, 2008. 295(2): p. C538-C544. 15. Rappaz, B., et al., Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. Journal of Biomedical Optics, 2009. 14(3): p. 034049-034049-5. 16. Yoon, J., et al., Label-free characterization of white blood cells by measuring 3D refractive index maps. arXiv preprint arXiv:1505.02609, 2015. 17. Yashunsky, V., et al., Surface plasmon-based infrared spectroscopy for cell biosensing. Journal of biomedical optics, 2012. 17(8): p. 0814091-0814098. 18. Kim, M.K., Principles and techniques of digital holographic microscopy. Journal of Photonics for Energy, 2010: p. 018005-018005-50. 19. Cotte, Y., et al., Marker-free phase nanoscopy. Nat Photon, 2013. 7(2): p. 113-117. 20. Iwai, H., et al., Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Optics Letters, 2004. 29(20): p. 2399-2401. 21. Wang, Z. and B. Han, Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Optics Letters, 2004. 29(14): p. 1671-1673. 22. Ikeda, T., et al., Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics letters, 2005. 30(10): p. 1165-1167. 23. Popescu, G., et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Optics letters, 2006. 31(6): p. 775-777. 24. Wolf, E., Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications, 1969. 1(4): p. 153-156. 25. Su, J.W., et al., Digital holographic microtomography for high‐resolution refractive index mapping of live cells. Journal of biophotonics, 2013. 6(5): p. 416-424. 26. Sung, Y., et al., Optical diffraction tomography for high resolution live cell imaging. Optics express, 2009. 17(1): p. 266-277. 27. Backman, V., et al., Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. Selected Topics in Quantum Electronics, IEEE Journal of, 1999. 5(4): p. 1019-1026. 28. Backman, V., et al., Detection of preinvasive cancer cells. Nature, 2000. 406(6791): p. 35-36. 29. Hsu, W.-C., et al. Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions. in Photonics Asia. 2012. International Society for Optics and Photonics. 30. Qiu, L., et al., Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett's esophagus. Nat Med, 2010. 16(5): p. 603-606. 31. Kalashnikov, M., et al., Assessing the contribution of cell body and intracellular organelles to the backward light scattering. Optics Express, 2012. 20(2): p. 816-826. 32. Schafer, K., The cell cycle: a review. Veterinary Pathology Online, 1998. 35(6): p. 461-478. 33. Wang, P., et al., Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy. Journal of biomedical optics, 2010. 15(6): p. 066028-066028-8. 34. Bista, R.K., et al., Quantification of nanoscale nuclear refractive index changes during the cell cycle. Journal of Biomedical Optics, 2011. 16(7): p. 070503-070503-3. 35. Anderson, K. and P. Wilson, White blood cell count and cardiovascular disease. J Am Med Assoc, 1992. 267: p. 1253-6. 36. Vozarova, B., et al., High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes, 2002. 51(2): p. 455-461. 37. Scott Brock, R., et al., Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006. 102(1): p. 25-36. 38. Drezek, R., et al., Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. Journal of Biomedical Optics, 2003. 8(1): p. 7-16. 39. Park, Y., et al., Diffraction phase and fluorescence microscopy. Optics Express, 2006. 14(18): p. 8263-8268. 40. Jaasma, M.J., W.M. Jackson, and T.M. Keaveny, The effects of morphology, confluency, and phenotype on whole-cell mechanical behavior. Annals of biomedical engineering, 2006. 34(5): p. 759-768. 41. Bueno-Ibarra, M.A. and L. Acho, Fast autofocus algorithm for automated microscopes. Optical Engineering, 2005. 44(6): p. 063601-063601-8. 42. Tuchin, V.V., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Vol. 744. 2008. 254. 43. Barer, R. and S. Joseph, Refractometry of living cells part I. Basic principles. Quarterly Journal of Microscopical Science, 1954. 3(32): p. 399-423. 44. Zivanovic, S.S., K.S. Yee, and K.K. Mei, A subgridding method for the time-domain finite-difference method to solve Maxwell's equations. Microwave Theory and Techniques, IEEE Transactions on, 1991. 39(3): p. 471-479. 45. Yurkin, M.A., et al., Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation. Applied Optics, 2005. 44(25): p. 5249-5256. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52796 | - |
dc.description.abstract | 癌症為台灣十大死因之首,並且大多來自源上皮細胞。癌化過程伴隨細胞結構的改變,影響其光學特性。許多研究透過光學檢測方式,例如散射等光學參數的測量,作為癌症檢測的工具。其中一個重要的光學參數即為折射率。折射率可視為細胞內生對比劑,能夠在不外加染色情況下分析細胞內部細微結構。透過三維折射率顯微鏡測量,能得到物體的折射率結構進行分析。而且,折射率分布在經過有限差分法,進而模擬細胞的散射特性。先前研究已提出,癌細胞的折射率較正常細胞來的高,而且癌病變組織的散射係數高於正常組織。本篇研究主要分析同一顆細胞隨時間生長下的折射率變化,在不同時期間對於散射特性的影響。藉由自製恆溫系統及細胞晶片,讓細胞在顯微鏡系統中存活一段時間。觀察比較正常細胞和癌細胞在細胞週期間生長,對於同一顆細胞,其隨時間生長下折射率的差異。結果發現,癌細胞平均折射率會有比較明顯提高的情形;然而,在正常細胞樣本中,折射率上升相較於緩慢。希望藉由癌細胞和正常細胞的差異,在不外加其他物質下,更加了解癌細胞在生長期間的生理現象,助於早期癌症的檢測上。
除了細胞週期研究外,散射特性能應用在其他細胞的分析上。本篇研究針對人體血液中的白血球進行分析,希望透過散射特性,進而區分三種白血球-單核球、嗜中性球和淋巴球。白血球實驗結果初步發現,嗜中性球折射率和乾重都較高,造成逆散射值偏高。單核球體積較大,但折射率偏低。淋巴球體積最小,折射率居中。因此,顯示出透過逆散射光譜的震盪能夠藉由體積區分單核球和淋巴球,藉由散射值的高低,能夠區隔出嗜中性球。 | zh_TW |
dc.description.abstract | Cancer is the top cause of death is in Taiwan, and almost derived from epithelial tissue. Optical properties are affected during the carcinogenesis due to cell structure distinct change including nucleus enlargement and concentration. These parameters could be the strong tool to distinguish cancer and normal tissue/cells. An important parameter - refractive index, endogenous contrast source in the cell, has been successfully studied microstructure of cell without any enteral staining recently. Further, FDTD simulation provides light scattering information at different angle and wavelength of cell by refractive index distribution. Former study showed that refractive index of cancer cell is higher than normal cell, and the scattering coefficient of carcinoma is higher the normal tissue too. Here, we want to study that the difference of refractive index of single cell within cell cycle between cancer cells and normal cells. Results suggest that refractive index increases prominently for cancer cell while growing slowly for normal cell. Our finding shows that investigating refractive index of cell growing naturally without any external staining materials could give us more information of normal physiological phenomena in cancer cell.
We also investigate white blood cells in human blood in order to distinguish three types of cell, monocytes, neutrophils and lymphocytes, by back-scattering spectrum analysis. Result indicates that neutrophils have the highest refractive index and dry mass. Monocytes are the largest cell with lowest refractive index while lymphocytes are smallest cell with higher refractive index than monocyte. Based on volume and diameter, we could distinguish monocyte and lymphocyte by oscillation of back-scattering spectrum. Using scattering value, neutrophils could be distinguished from the blood sample .Our finding suggest that back-scattering spectrum may help us distinguish white blood cells in vivo. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:28:03Z (GMT). No. of bitstreams: 1 ntu-104-R02945037-1.pdf: 6303953 bytes, checksum: b469c62d7decda635df24706b8956034 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目錄 vi 圖目錄 viii 第一章:導論 1 1.1研究背景 1 1.2研究動機 2 第二章: 理論及文獻回顧 4 2.1定量式相位顯微鏡技術原理 5 2.1.1 Advanced Iterative Algorithm (AIA) 5 2.1.2 希爾伯轉換(Hilbert Transform) 6 2.2繞射斷層掃描(Optical Diffraction Tomography, ODT) 9 2.3三維折射率顯微鏡(Digital Holography microscope, DHM) 11 2.4光學架設圖 12 2.5上皮細胞逆散射特性和FDTD散射模擬 18 2.6細胞週期(Cell cycle) 19 2.7白血球 20 第三章: 方法和材料 21 3.1正立式三維顯微術 21 3.3 細胞晶片製作 26 3.4長時間細胞觀察 27 3.5 共光路系統 XY掃描 32 3.6長時間自動拍攝 33 3.7白血球 35 第四章: 實驗結果與討論 38 4.1正立式三維顯微鏡 38 4.2細胞在自製恆溫系統中生長情形 39 4.3 Hela細胞之相位與折射率隨時間變化結果 41 4.4 SG細胞之相位與折射率隨時間變化結果 44 4.5淋巴球、嗜中性球和單核球的相關參數測量與FDTD模擬結果 47 4.5.1 FDTD散射模擬 53 4.6紅血球 56 第五章: 討論、結論與未來展望 58 5.1癌細胞 58 5.2白血球 59 5.3未來展望 60 參考文獻 62 | |
dc.language.iso | zh-TW | |
dc.title | 三維折射率顯微鏡應用於定量式分析癌細胞之
細胞週期與白血球之分類 | zh_TW |
dc.title | Three-dimensional refractive index microscope
for analyzing cancer cell within cell cycle and classification of Leukocyte | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),黃念祖(Nien-Tsu Huang) | |
dc.subject.keyword | 細胞週期,散射,白血球,折射率,癌細胞, | zh_TW |
dc.subject.keyword | cell cycle,scattering,white blood cells,refractive index,cancer cell, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
dc.date.embargo-lift | 2300-01-01 | - |
Appears in Collections: | 生醫電子與資訊學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 6.16 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.