請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52789完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Mei-Chia Kuo | en |
| dc.contributor.author | 郭美家 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:27:42Z | - |
| dc.date.available | 2020-08-19 | |
| dc.date.copyright | 2015-08-19 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | [1] Greg. Sun. ”Advances in Lasers and Electro Optics”, chap 13 (2010)
[2] Canham, L. T. “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Applied Physics Letters 57.10 (1990): 1046-1048. [3] Filonov A. B., Ossicini S., Bassani F., and Arnaud d'Avitaya F. ” Effect of oxygen on the optical properties of small silicon pyramidal clusters”, Phys. Rev. B 65, 195317 (2002) [4] Wolkin M. V., Jorne J., Fauchet P. M., Allan G., and Delerue c. ” Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen”, Phys. Rev. Lett. 82,197 (1999) [5] Zhou F., and Head J. D. ” Role of Si=O in the Photoluminescence of Porous Silicon”, J. Phys. Chem. B 104,9981 (2000) [6] Baierle R.J., Caldas M.J., Molinari E., and Ossicini S. ”Optical emission from small Si particles”, Solid State Communications 102,545 (1997) [7] Puzder A., Williamson A.J., Grossman J.C., and Galli G. ”Surface Chemistry of Silicon Nanoclusters”, Phys. Rev. Lett. 88, 97401 (2002) [8] Kobitski A. Yu, Zhuravlev K. S., Wagner H. P., and Zahn D. R. T. ” Self-trapped exciton recombination in silicon nanocrystals”, Phys. Rev. B. 63, 115423 (2001) [9] Kanemitsu Y., Ogawa T., Shiraishi K., Takeda K. ” Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell” , Phys. Rev. B. 48, 4883 (1993) [10] Klimov V. I., Schwarz Ch. J., McBranch D. W., White C. W. ” Initial carrier relaxation dynamics in ion-implanted Si nanocrystals: Femtosecond transient absorption study”, Appl. Phys. Lett. 73,18,2603 (1998) [11] K. J. Vahala “Optical microcavities”, Nature, vol. 424, no. 6950, pp. 839–846 (2003) [12] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala “Fabrication and coupling to planar high-Q silica disk microcavities”, Appl. Phys. Lett., vol. 83, no. 4, pp. 797–799 (2003) [13] P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi “Integration of fiber-coupled high-Q SiNx microdisk with atom chips”, Appl. Phys. Lett., vol. 89, no. 13, pp. 131108-1–131108-3 (2006) [14] U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher “GaAs/AlGaAs microdisk lasers”, Appl. Phys. Lett., vol. 64, no. 15, pp. 1911–1913 (1994) [15] V. Zwiller, S. Fälth, J. Persson, W. Seifert, L. Samuelson, and G. Björk “Fabrication and time-resolved studies of visible microdisk lasers”, J. Appl. Phys., vol. 93, no. 4, pp. 2307–2309 (2003) [16] E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu “Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching”, Appl. Phys. Lett., vol. 85, no. 22, pp. 5179–5181 (2004) [17] M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa “Polymer microdisk and microring lasers”, Opt. Lett., vol. 20, no. 20, pp. 2093–2095 (1995) [18] J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator”, Nature Photon., vol. 4. no. 1, pp. 46–49 (2010) [19] W. Kim, Ş. K. Özdemir, J. Zhu, L. He, and L. Yang “Demonstration of mode splitting in an optical microcavity in aqueous environment”, Appl. Phys. Lett., vol. 97, no. 7, pp. 071111-1–0711113 (2010) [20] M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson “An alignment-free fiber-coupled microsphere resonator for gas sensing applications”, Appl. Phys. Lett., vol. 96, no. 23, pp. 231102-1–231102-3 (2010) [21] C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing”, Appl. Phys. Lett., vol. 94, no. 23, pp. 231119-1–231119-3 (2008) [22] Debieu, Olivier. “Optical characterization of luminescent silicon nanocrystals embedded in glass matrices”, doctoral dissertation, Friedrich-Schiller-Universität Jena, Germany (2008) [23] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan “Whispering-gallery mode microdisk lasers”, Appl. Phys. Lett., vol. 60, no. 3, 289–291 (1992) [24] R. E. Slusher, A. F. J. Levi, U. Mohiideen, S. L. McCall, S. J. Pearton, and R. A. Logan “Threshold characteristics of semiconductor microdisk lasers”, Appl. Phys. Lett., vol. 63, no. 10, pp. 1310–1312 (1993) [25] B. E. A. Saleh and M. C. Teich ”Fundamentals of Photonics”, Hoboken, NJ: John Wiley & Sons (1991) [26] M. Borselli, T. J. Johnson, and O. Painter “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment”, Opt. Express, vol. 13, no. 5, pp. 1515–1530 (2005) [27] C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities”, Appl. Phys. Lett., vol. 90, no. 5, pp. 051108-1–051108-3 (2007) [28] M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator”, Opt. Express, vol. 16, no. 17, pp. 13218–13224 (2008) [29]馬群哲,「以電漿增強式化學氣相沈積法成長奈米矽晶及其特性研究 」國立台灣大學碩士論文 (2014) [30] Catherine Louise Bonner “Multi-watt, diode pumped planar waveguide lasers.”, doctoral dissertation, University of Southampton, United Kingdom. (2000) [31] J. Verbert, F. Mazen “Efficient coupling of Er-doped silicon-rich oxide to microdisk whispering gallery modes”, Appl. Phys. Lett. 86, 111117 (2005) [32] A. L. Schawlow and C. H. Townes “Infrared and Optical Masers”, Phys. Rev. 112, 1940 (1958) [33] Xiaoming Wen, Lap Van Dao, Peter Hannaford, Eun-Chel Cho, Young H Cho and Martin A Green ”Excitation dependence of photoluminescence in silicon quantum dots”, New Journal of Physics 9, 337 (2007) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52789 | - |
| dc.description.abstract | 我們以電漿增強式化學氣相沈積法成長並在高溫熱退火下形成奈米矽晶的薄膜當作主動層,成功製作出了內含奈米矽晶的微碟共振腔,在室溫環境下,在600nm~1000nm的波段之中,量測到明顯的迴音廊模態。
奈米矽晶微碟共振腔分別以兩種不同的微影方式製作,以標準微影製程做出直徑10μm與20μm的微碟,以電子束微影製程做出直徑4、6、8、10μm的微碟,量測直徑8μm的微碟,Q值最高可達到1200,而直徑10μm的微碟可達到2400,我們同時也製作了厚度較厚的直徑10μm的微碟,希望能夠增加在主動層內的侷限。我們也能利用奈米矽晶/二氧化矽超晶格結構製作出微碟共振腔,同時也量測到了迴音廊模態。 最後針對入射功率的改變,量測輸出功率的變化,但沒有觀察到雷射閥值,主要原因為在很低的功率下,奈米矽晶就已經達到飽和狀態,而入射功率與線寬的關係部分應是有受激載子吸收的效應,造成模態擴張線寬增加的趨勢。 | zh_TW |
| dc.description.abstract | We have successfully fabricated optically active microdisk resonators with Si nanocrystals grown by plasma enhanced chemical vapor deposition (PECVD) and the post-annealing process. The room-temperature photoluminescence from single microdisk shows the characteristic modal structure of whispering-gallery modes in the wavelength between 600nm and1000nm.
We fabricated Si-nanocrystal-embedded microdisk resonators by two different lithography processes. We use standard lithography to fabricate the microdisk resonators with diameters of 10μm and 20μm and electron-beam lithography for 4-μm, 6-μm, 8-μm and 10-μm-diameter disks. The quality factors of 8μm and 10μm disks can reach 1200 and 2400 respectively. We also fabricated thicker 10-μm-diameter disks to increase the confinement of the disk. We can also use Si-nc/SiO2 superlattice as the active layer in the microdisk resonators and the WGMs were observed clearly Finally, we discussed the relation between pump power and output power. We observed the saturation of the excitable nanocrystals at low pump power and the linewidth broadening with pump power increasing due to the excited carrier absorption (ECA). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:27:42Z (GMT). No. of bitstreams: 1 ntu-104-R02941019-1.pdf: 2610842 bytes, checksum: 1f68d9505fc01720e62adb132547b6ec (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 iv 第 1 章 簡介 1 1.1 奈米矽晶 1 1.2 微碟共振腔 3 1.3 研究動機 6 1.4 論文架構 7 第 2 章 理論 8 2.1 量子侷限效應 8 2.2 迴音廊模態 9 2.3 Q值 14 第 3 章 元件製程 16 3.1 薄膜沉積(PECVD) 16 3.2 高溫熱退火 (Annealing) 17 3.3 微影與反應式離子蝕刻 (Photolithography and RIE etching) 19 3.4 結構分析 20 第 4 章 量測架構 25 第 5 章 實驗結果與討論 28 5.1 製程結果 28 5.2 量測結果 30 第 6 章 結論 50 Reference 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微碟共振腔 | zh_TW |
| dc.subject | 奈米矽晶 | zh_TW |
| dc.subject | Microdisk | en |
| dc.subject | Si nanocrystal | en |
| dc.title | 奈米矽晶微碟共振腔發光特性與迴音廊模態之研究 | zh_TW |
| dc.title | Whispering-gallery Modes and Light Emission from Silicon-Nanocrystal-Embedded Microdisk Resonators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭隆瀚,林浩雄,黃鼎偉 | |
| dc.subject.keyword | 微碟共振腔,奈米矽晶, | zh_TW |
| dc.subject.keyword | Microdisk,Si nanocrystal, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
