Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorYu-Hsin Hsiehen
dc.contributor.author謝佑鑫zh_TW
dc.date.accessioned2021-06-15T16:27:40Z-
dc.date.available2020-09-25
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-14
dc.identifier.citationAkira, S., Takeda, K., Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675-680. doi: 10.1038/90609
Akira, S., Uematsu, S., Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783-801. doi: 10.1016/j.cell.2006.02.015
Aksoy, E., Taboubi, S., Torres, D., Delbauve, S., Hachani, A., Whitehead, M. A., . . . Vanhaesebroeck, B. (2012). The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol, 13(11), 1045-1054. doi: 10.1038/ni.2426
Bang-Yan Yang, C.-C. C. (2010). The functional roles of TBK1 in TLR3/4 signlings. (Master), National Taiwan University.
Bonnard, M., Mirtsos, C., Suzuki, S., Graham, K., Huang, J., Ng, M., . . . Yeh, W. C. (2000). Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J, 19(18), 4976-4985. doi: 10.1093/emboj/19.18.4976
Bossis, G., Melchior, F. (2006). SUMO: regulating the regulator. Cell Div, 1, 13. doi: 10.1186/1747-1028-1-13
Brubaker, S. W., Bonham, K. S., Zanoni, I., Kagan, J. C. (2015). Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol, 33, 257-290. doi: 10.1146/annurev-immunol-032414-112240
Buss, H., Dorrie, A., Schmitz, M. L., Hoffmann, E., Resch, K., Kracht, M. (2004). Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem, 279(53), 55633-55643. doi: 10.1074/jbc.M409825200
Chang, C. H., Lai, L. C., Cheng, H. C., Chen, K. R., Syue, Y. Z., Lu, H. C., . . . Ling, P. (2011). TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem, 286(9), 7043-7051. doi: 10.1074/jbc.M110.164632
Chang, M., Jin, W., Sun, S. C. (2009). Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol, 10(10), 1089-1095. doi: 10.1038/ni.1777
Chao, C.-H. (2013). The functional role of a sorting nexin family protein in TLR4-mediated immune response. (Master), National Taiwan University.
Chau, T. L., Gioia, R., Gatot, J. S., Patrascu, F., Carpentier, I., Chapelle, J. P., . . . Chariot, A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci, 33(4), 171-180. doi: 10.1016/j.tibs.2008.01.002
Cui, J., Li, Y., Zhu, L., Liu, D., Songyang, Z., Wang, H. Y., Wang, R. F. (2012). NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol, 13(4), 387-395. doi: 10.1038/ni.2239
Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A., Kelliher, M. A. (2005). Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem, 280(44), 36560-36566. doi: 10.1074/jbc.M506831200
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., . . . Chen, Z. J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 103(2), 351-361.
Enesa, K., Ordureau, A., Smith, H., Barford, D., Cheung, P. C., Patterson-Kane, J., . . . Cohen, P. (2012). Pellino1 is required for interferon production by viral double-stranded RNA. J Biol Chem, 287(41), 34825-34835. doi: 10.1074/jbc.M112.367557
Everett, R. D., Boutell, C., Hale, B. G. (2013). Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol, 11(6), 400-411. doi: 10.1038/nrmicro3015
Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., . . . Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4(5), 491-496. doi: 10.1038/ni921
Flotho, A., Melchior, F. (2013). Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem, 82, 357-385. doi: 10.1146/annurev-biochem-061909-093311
Gareau, J. R., Lima, C. D. (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 11(12), 861-871. doi: 10.1038/nrm3011
Gay, N. J., Symmons, M. F., Gangloff, M., Bryant, C. E. (2014). Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol, 14(8), 546-558. doi: 10.1038/nri3713
Gohda, J., Matsumura, T., Inoue, J. (2004). Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol, 173(5), 2913-2917.
Goncalves, A., Burckstummer, T., Dixit, E., Scheicher, R., Gorna, M. W., Karayel, E., . . . Superti-Furga, G. (2011). Functional dissection of the TBK1 molecular network. PLoS One, 6(9), e23971. doi: 10.1371/journal.pone.0023971
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L. C., Wang, G. G., . . . Karin, M. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439(7073), 204-207. doi: 10.1038/nature04369
Hacker, H., Tseng, P. H., Karin, M. (2011). Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol, 11(7), 457-468. doi: 10.1038/nri2998
Hamada, M., Haeger, A., Jeganathan, K. B., van Ree, J. H., Malureanu, L., Walde, S., . . . van Deursen, J. M. (2011). Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol, 194(4), 597-612. doi: 10.1083/jcb.201102018
Hashizume, C., Kobayashi, A., Wong, R. W. (2013). Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis, 4, e854. doi: 10.1038/cddis.2013.370
Helgason, E., Phung, Q. T., Dueber, E. C. (2013). Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett, 587(8), 1230-1237. doi: 10.1016/j.febslet.2013.01.059
Iwasaki, A., Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nat Immunol, 16(4), 343-353. doi: 10.1038/ni.3123
Jakobs, A., Koehnke, J., Himstedt, F., Funk, M., Korn, B., Gaestel, M., Niedenthal, R. (2007). Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods, 4(3), 245-250. doi: 10.1038/nmeth1006
Janeway, C. A., Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol, 54 Pt 1, 1-13.
Janeway, C. A., Jr., Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197-216. doi: 10.1146/annurev.immunol.20.083001.084359
Kagan, J. C., Magupalli, V. G., Wu, H. (2014). SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol, 14(12), 821-826. doi: 10.1038/nri3757
Kawagoe, T., Sato, S., Matsushita, K., Kato, H., Matsui, K., Kumagai, Y., . . . Akira, S. (2008). Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol, 9(6), 684-691. doi: 10.1038/ni.1606
Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 11(1), 115-122.
Kawai, T., Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637-650. doi: 10.1016/j.immuni.2011.05.006
Klein, U. R., Haindl, M., Nigg, E. A., Muller, S. (2009). RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin. Mol Biol Cell, 20(1), 410-418. doi: 10.1091/mbc.E08-05-0511
Lee, C. C., Avalos, A. M., Ploegh, H. L. (2012). Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol, 12(3), 168-179. doi: 10.1038/nri3151
Li, S., Wang, L., Berman, M., Kong, Y. Y., Dorf, M. E. (2011). Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity, 35(3), 426-440. doi: 10.1016/j.immuni.2011.06.014
Liu, B., Mink, S., Wong, K. A., Stein, N., Getman, C., Dempsey, P. W., . . . Shuai, K. (2004). PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol, 5(9), 891-898. doi: 10.1038/ni1104
Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., . . . Chen, Z. J. (2015). Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347(6227), aaa2630. doi: 10.1126/science.aaa2630
Liu, X., Chen, W., Wang, Q., Li, L., Wang, C. (2013). Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog, 9(6), e1003480. doi: 10.1371/journal.ppat.1003480
Liu, Y., Bridges, R., Wortham, A., Kulesz-Martin, M. (2012). NF-kappaB repression by PIAS3 mediated RelA SUMOylation. PLoS One, 7(5), e37636. doi: 10.1371/journal.pone.0037636
Ma, X., Helgason, E., Phung, Q. T., Quan, C. L., Iyer, R. S., Lee, M. W., . . . Dueber, E. C. (2012). Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A, 109(24), 9378-9383. doi: 10.1073/pnas.1121552109
McWhirter, S. M., Fitzgerald, K. A., Rosains, J., Rowe, D. C., Golenbock, D. T., Maniatis, T. (2004). IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A, 101(1), 233-238. doi: 10.1073/pnas.2237236100
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435. doi: 10.1038/nature07201
Medzhitov, R., Preston-Hurlburt, P., Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388(6640), 394-397. doi: 10.1038/41131
Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 5(5), 503-507. doi: 10.1038/ni1061
Moynagh, P. N. (2014). The roles of Pellino E3 ubiquitin ligases in immunity. Nat Rev Immunol, 14(2), 122-131. doi: 10.1038/nri3599
Muzio, M., Ni, J., Feng, P., Dixit, V. M. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 278(5343), 1612-1615.
O'Neill, L. A., Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 7(5), 353-364. doi: 10.1038/nri2079
O'Neill, L. A., Golenbock, D., Bowie, A. G. (2013). The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol, 13(6), 453-460. doi: 10.1038/nri3446
Ofengeim, D., Yuan, J. (2013). Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol, 14(11), 727-736. doi: 10.1038/nrm3683
Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., . . . Cheng, G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439(7073), 208-211. doi: 10.1038/nature04374
Packham, S., Warsito, D., Lin, Y., Sadi, S., Karlsson, R., Sehat, B., Larsson, O. (2015). Nuclear translocation of IGF-1R via p150(Glued) and an importin-beta/RanBP2-dependent pathway in cancer cells. Oncogene, 34(17), 2227-2238. doi: 10.1038/onc.2014.165
Pandey, S., Kawai, T., Akira, S. (2015). Microbial sensing by toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Med, 5(1), a016246.
Parvatiyar, K., Barber, G. N., Harhaj, E. W. (2010). TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem, 285(20), 14999-15009. doi: 10.1074/jbc.M110.109819
Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., . . . Glass, C. K. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature, 437(7059), 759-763. doi: 10.1038/nature03988
Pichler, A., Gast, A., Seeler, J. S., Dejean, A., Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell, 108(1), 109-120.
Saul, V. V., Niedenthal, R., Pich, A., Weber, F., Schmitz, M. L. (2015). SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochim Biophys Acta, 1853(1), 136-143. doi: 10.1016/j.bbamcr.2014.10.008
Seeler, J. S., Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol, 4(9), 690-699. doi: 10.1038/nrm1200
Sehat, B., Tofigh, A., Lin, Y., Trocme, E., Liljedahl, U., Lagergren, J., Larsson, O. (2010). SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal, 3(108), ra10. doi: 10.1126/scisignal.2000628
Shen, R. R., Hahn, W. C. (2011). Emerging roles for the non-canonical IKKs in cancer. Oncogene, 30(6), 631-641. doi: 10.1038/onc.2010.493
Smith, H., Liu, X. Y., Dai, L., Goh, E. T., Chan, A. T., Xi, J., . . . Cheung, P. C. (2011). The role of TBK1 and IKKepsilon in the expression and activation of Pellino 1. Biochem J, 434(3), 537-548. doi: 10.1042/BJ20101421
Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., Mirtsos, C., . . . Yeh, W. C. (2002). Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature, 416(6882), 750-756. doi: 10.1038/nature736
Takeuchi, O., Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820. doi: 10.1016/j.cell.2010.01.022
Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., . . . Akira, S. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 11(4), 443-451.
Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev, 249(1), 158-175. doi: 10.1111/j.1600-065X.2012.01146.x
Tojima, Y., Fujimoto, A., Delhase, M., Chen, Y., Hatakeyama, S., Nakayama, K., . . . Nakanishi, M. (2000). NAK is an IkappaB kinase-activating kinase. Nature, 404(6779), 778-782. doi: 10.1038/35008109
Tseng, P. H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D. A., Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol, 11(1), 70-75. doi: 10.1038/ni.1819
Ulrich, H. D. (2012). Ubiquitin, SUMO, and phosphate: how a trio of posttranslational modifiers governs protein fate. Mol Cell, 47(3), 335-337. doi: 10.1016/j.molcel.2012.07.016
Wang, C., Chen, T., Zhang, J., Yang, M., Li, N., Xu, X., Cao, X. (2009). The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol, 10(7), 744-752. doi: 10.1038/ni.1742
Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J., Chen, Z. J. (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 412(6844), 346-351. doi: 10.1038/35085597
Werner, A., Flotho, A., Melchior, F. (2012). The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell, 46(3), 287-298. doi: 10.1016/j.molcel.2012.02.017
Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., . . . Akira, S. (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301(5633), 640-643. doi: 10.1126/science.1087262
Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., . . . Kagan, J. C. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell, 147(4), 868-880. doi: 10.1016/j.cell.2011.09.051
Zhang, M., Wu, X., Lee, A. J., Jin, W., Chang, M., Wright, A., . . . Sun, S. C. (2008). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem, 283(27), 18621-18626. doi: 10.1074/jbc.M801451200
Zhao, W. (2013). Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett, 587(6), 542-548. doi: 10.1016/j.febslet.2013.01.052
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52788-
dc.description.abstract先天性免疫(innate immunity) 是宿主抵抗外來病原體侵略的第一道防線。Toll-like receptors (TLRs) 透過辨識pathogen-associated molecular patterns (PAMPs) 引發下游訊息傳遞,並誘發前發炎細胞激素(pro-inflammatory cytokines)以及第一型干擾素(type I interferon)的產生。TLR4訊息傳遞透過MyD88-IKKα/β-NF-κB以及TRIF- TBK1-IRF3/7途徑,分別參與在前發炎細胞激素以及第一型干擾素的生成。然而,先前研究NF-zh_TW
dc.description.abstractToll-like receptors (TLRs) belongs to the pattern-recognition-receptors (PRRs) that sense a variety of pathogen-associated molecular patterns (PAMPs) derived from microbes to initiate the first line of host defense against invading pathogens. TLR4 engagement mediates activation of downstream MyD88-IKK-NF-κB and TRIF-TBK1-IRF3 signaling pathways leading to pro-inflammatory cytokines and type I interferon production, respectively. We previously found that TBK1 deficiency resulted in defective production of certain NF-en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:27:40Z (GMT). No. of bitstreams: 1
ntu-104-R02448004-1.pdf: 3599255 bytes, checksum: e495a29aef37e6c7edf667bdf88f3b9f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents 1
Introduction 5
Toll-like Receptors 7
MyD88-dependent signaling pathway 9
TRIF-dependent signaling pathway 10
TRIF-dependent late phase NF-kB activation 12
TBK1 activation and its roles in innate immune signaling 13
SUMO machinery: mechanism and its role in innate immune 15
Specific aims 17
Materials and Methods 18
Antibodies and Reagents List 18
Plasmids List 19
Cell line, Cell culture and Transfection 20
Lentiviral infaction and shRNA-Mediated Gene Silencing 20
Preparation of total cell lysate 21
Immunoblotting 22
Immunoprecipitation 22
Preparation of nuclear and cytosolic extracts 23
Enzyme-linked immunosorbent assay (ELISA) 24
RNA extraction and Quantitative RT-PCR (RT-qPCR) 25
Electroporation 26
CRISPR/Cas9-mediated depletion of TBK1 in RAW264.7 murine macrophages 26
Statistical analysis 27
Results 28
TBK1 is required for p65 phosphorylation at Ser536 but not nuclear translocation upon LPS treatment 28
Generation of TBK1-/- RAW264.7 macrophages using CRISPR/Cas9 system 29
TBK1 deficiency diminishes the expression of both type I interferon and NF-κB-mediated proinflammatory cytokines in LPS- and poly(I:C)-stimulated RAW264.7 macrophages. 30
TBK1 is modified by SUMO1 conjugation upon poly(I:C) treatment. 31
TBK1 SUMOylation is not required for TBK1 activation. 31
TBK1 SUMOylation is critical for the production of pro-inflammatory cytokines upon LPS stimulation. 33
Discussion 34
The role of TBK1 in modulating NF-κB activity 36
Subcellular localization of TBK1 controls downstream signal responses 37
Post-translational modification defines the functional consequences of TBK1 38
The E3 ligase catalyzed TBK1 SUMOylation remains obscure. 40
Figures 43
Figure. 1 TBK1 is necessary for LPS-induced p65 Ser536 phosphorylation without impairing IKK
dc.language.isoen
dc.subjectTLR訊息傳遞zh_TW
dc.subject小泛素化zh_TW
dc.subjectTLR signaling pathwayen
dc.subjectSUMOylationen
dc.titleTBK1小泛素化在TLR3/4訊號傳遞所扮演之功能角色zh_TW
dc.titleThe functional role of TBK1 SUMOylation in TLR3/4 signaling pathwayen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林琬琬(Wan-Wan Lin),劉旻禕(Helene Minyi Liu)
dc.subject.keywordTLR訊息傳遞,小泛素化,zh_TW
dc.subject.keywordTLR signaling pathway,SUMOylation,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2015-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved