請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | |
| dc.contributor.author | Yin-Tsong Lin | en |
| dc.contributor.author | 林穎聰 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:26:52Z | - |
| dc.date.available | 2016-08-20 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | VI. REFERENCES
[1] A. J. Wein, L. R. Kavoussi, A. C. Novick, A. W. Partin, and C. A. Peters, Campbell-Walsh Urology: Expert Consult Premium Edition: Enhanced Online Features and Print, 4-Volume Set: Elsevier Health Sciences, 2011. [2] P. T. Dorsher and P. M. McIntosh, 'Neurogenic bladder,' Advances in urology, 2012. [3] A. Manack, S. P. Motsko, C. Haag‐Molkenteller, R. R. Dmochowski, E. L. Goehring, B. A. Nguyen‐Khoa, and J. K. Jones, 'Epidemiology and healthcare utilization of neurogenic bladder patients in a US claims database,' Neurourology and urodynamics, vol. 30, pp. 395-401, 2011. [4] N. J. Rijkhoff, 'Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives,' Child's nervous system, vol. 20, pp. 75-86, 2004. [5] F. N. Burks, D. T. Bui, and K. M. Peters, 'Neuromodulation and the neurogenic bladder,' Urol Clin North Am, vol. 37, pp. 559-65, Nov 2010. [6] S. C. Chen, W. M. Grill, W. J. Fan, Y. R. Kou, Y. S. Lin, C. H. Lai, and C. W. Peng, 'Bilateral pudendal afferent stimulation improves bladder emptying in rats with urinary retention,' BJU international, vol. 109, pp. 1051-1058, 2012. [7] S. C. Chen, C. H. Lai, W. J. Fan, and C. W. Peng, 'Pudendal neuromodulation improves voiding efficiency in diabetic rats,' Neurourology and urodynamics, vol. 32, pp. 293-300, 2013. [8] C. W. Peng, J. J. Chen, C. L. Cheng, and W. M. Grill, 'Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents,' Journal of neural engineering, vol. 5, pp. 144-54, 2008. [9] P. B. Yoo, E. E. Horvath, C. L. Amundsen, G. D. Webster, and W. M. Grill, 'Multiple pudendal sensory pathways reflexly modulate bladder and urethral activity in patients with spinal cord injury,' The Journal of urology, vol. 185, pp. 737-743, 2011. [10] S. A. Kaplan and J. G. Blaivas, 'Diabetic cystopathy,' Journal of Diabetic Complications, vol. 2, pp. 133-139, 1988. [11] E. M. Kudlacz, A. L. Chun, K. A. Skau, M. C. Gerald, and L. J. Wallace, 'Diabetes and diuretic-induced alterations in function of rat urinary bladder,' Diabetes, vol. 37, pp. 949-955, 1988. [12] M. Paro, M. Prosdocimi, W. X. Zhang, G. Sutherland, and A. A. Sima, 'Autonomic neuropathy in BB rats and alterations in bladder function,' Diabetes, vol. 38, pp. 1023-30, Aug 1989. [13] W. C. Groat, 'Integrative control of the lower urinary tract: preclinical perspective,' British journal of pharmacology, vol. 147, pp. S25-S40, 2006. [14] Z. Yang, P. C. Dolber, and M. O. Fraser, 'Diabetic urethropathy compounds the effects of diabetic cystopathy,' The Journal of urology, vol. 178, pp. 2213-2219, 2007. [15] W. Holmes and J. Young, 'Nerve regeneration after immediate and delayed suture,' Journal of anatomy, vol. 77, p. 63, 1942. [16] A. Mosahebi, P. Fuller, M. Wiberg, and G. Terenghi, 'Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration,' Experimental neurology, vol. 173, pp. 213-223, 2002. [17] K. Sasaki, M. B. Chancellor, W. F. Goins, M. W. Phelan, J. C. Glorioso, W. C. de Groat, and N. Yoshimura, 'Gene therapy using replication-defective herpes simplex virus vectors expressing nerve growth factor in a rat model of diabetic cystopathy,' Diabetes, vol. 53, pp. 2723-2730, 2004. [18] R. D. Madison, C. da Silva, P. Dikkes, R. L. Sidman, and T.-H. Chiu, 'Peripheral nerve regeneration with entubulation repair: comparison of biodegradeable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel,' Experimental neurology, vol. 95, pp. 378-390, 1987. [19] C. J. Chang and S. H. Hsu, 'The effects of low-intensity ultrasound on peripheral nerve regeneration in poly (DL-lactic acid-co-glycolic acid) conduits seeded with Schwann cells,' Ultrasound in medicine & biology, vol. 30, pp. 1079-1084, 2004. [20] J. M. Byers, K. F. Clark, and G. C. Thompson, 'Effect of pulsed electromagnetic stimulation on facial nerve regeneration,' Archives of Otolaryngology–Head & Neck Surgery, vol. 124, pp. 383-389, 1998. [21] A. C. Mendonça, C. H. Barbieri, and N. Mazzer, 'Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats,' Journal of neuroscience methods, vol. 129, pp. 183-190, 2003. [22] R. Borgens, J. Vanable, and L. Jaffe, 'Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents,' Journal of Experimental Zoology, vol. 200, pp. 403-416, 1977. [23] W. A. Nix and H. Hopf, 'Electrical stimulation of regenerating nerve and its effect on motor recovery,' Brain research, vol. 272, pp. 21-25, 1983. [24] B. Pomeranz, M. Mullen, and H. Markus, 'Effect of applied electrical fields on sprouting of intact saphenous nerve in adult rat,' Brain research, vol. 303, pp. 331-336, 1984. [25] J. M. Kerns, I. M. Pavkovic, A. J. Fakhouri, K. L. Wickersham, and J. A. Freeman, 'An experimental implant for applying a DC electrical field to peripheral nerve,' Journal of neuroscience methods, vol. 19, pp. 217-223, 1987. [26] G. C. Román, H. K. Strahlendorf, P. W. Coates, and B. A. Rowley, 'Stimulation of sciatic nerve regeneration in the adult rat by low-intensity electric current,' Experimental neurology, vol. 98, pp. 222-232, 1987. [27] B. Pomeranz and J. J. Campbell, 'Weak electric current accelerates motoneuron regeneration in the sciatic nerve of ten-month-old rats,' Brain research, vol. 603, pp. 271-278, 1993. [28] M. C. Lu, C. Y. Ho, S. F. Hsu, H. C. Lee, J. H. Lin, C. H. Yao, and Y. S. Chen, 'Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve,' Neurorehabilitation and Neural Repair, vol. 22, pp. 367-373, 2008. [29] K. Haastert-Talini, R. Schmitte, N. Korte, D. Klode, A. Ratzka, and C. Grothe, 'Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps,' Journal of neurotrauma, vol. 28, pp. 661-674, 2011. [30] R. M. Teodori, A. M. Silva, M. T. Silva, L. S. Oliveira, M. L. Polacow, and E. C. Guirro, 'High-voltage electrical stimulation improves nerve regeneration after sciatic crush injury,' Brazilian Journal of Physical Therapy, vol. 15, pp. 325-331, 2011. [31] C. C. Yeh, Y. C. Lin, F. J. Tsai, C. Y. Huang, C. H. Yao, and Y. S. Chen, 'Timing of applying electrical stimulation is an important factor deciding the success rate and maturity of regenerating rat sciatic nerves,' Neurorehabilitation and Neural Repair, 2010. [32] M. S. Alrashdan, M. A. Sung, Y. K. Kwon, H. J. Chung, S. J. Kim, and J. H. Lee, 'Effects of combining electrical stimulation with BDNF gene transfer on the regeneration of crushed rat sciatic nerve,' Acta neurochirurgica, vol. 153, pp. 2021-2029, 2011. [33] C. W. Peng, J. J. J. Chen, C. L. Cheng, and W. M. Grill, 'Role of pudendal afferents in voiding efficiency in the rat,' American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 294, pp. R660-R672, 2008. [34] Y. T. Lin, C. H. Lai, T. S. Kuo, C. C. Chen, Y. L. Chen, S. T. Young, S. C. Chen, J. S. Lai, T. H. Hsieh, and C. W. Peng, 'Dual-channel neuromodulation of pudendal nerve with closed-loop control strategy to improve bladder functions,' J Med Biol Eng, vol. 34, pp. 82-89, May 2014. [35] C. H. Kao, J. J. Chen, Y. M. Hsu, D. T. Bau, C. H. Yao, and Y. S. Chen, 'High-frequency electrical stimulation can be a complementary therapy to promote nerve regeneration in diabetic rats,' 2013. [36] Y. C. Lin, C. H. Kao, Y. K. Cheng, J. J. Chen, C. H. Yao, and Y. S. Chen, 'Current-modulated electrical stimulation as a treatment for peripheral nerve regeneration in diabetic rats,' Restor Neurol Neurosci, vol. 32, pp. 437-446, 2014. [37] W. J. Fan, Y. T. Li, J. J. Chen, S. C. Chen, Y. S. Lin, Y. R. Kou, and C. W. Peng, 'Sexually dimorphic urethral activity in response to pharmacological activation of 5-HT1A receptors in the rat,' Am J Physiol Renal Physiol, vol. 305, pp. F1332-42, Nov 1 2013. [38] J. H. Bae, P. B. Jung, and J. G. Lee, 'The effects of alpha-adrenoceptor antagonists on the urethral perfusion pressure of the female rat,' BJU Int, vol. 96, pp. 1131-5, Nov 2005. [39] S. Y. Jung, M. O. Fraser, H. Ozawa, O. Yokoyama, M. Yoshiyama, W. C. De Groat, and M. B. Chancellor, 'Urethral afferent nerve activity affects the micturition reflex; implication for the relationship between stress incontinence and detrusor instability,' J Urol, vol. 162, pp. 204-12, Jul 1999. [40] S. C. Chen, C. L. Cheng, W. J. Fan, J. J. Chen, C. H. Lai, and C. W. Peng, 'Effect of a 5-HT1A receptor agonist (8-OH-DPAT) on external urethral sphincter activity in a rat model of pudendal nerve injury,' Am J Physiol Regul Integr Comp Physiol, vol. 301, pp. R225-35, Jul 2011. [41] S. C. D'Amico, I. P. Schuster, and W. F. Collins, 'Quantification of external urethral sphincter and bladder activity during micturition in the intact and spinally transected adult rat,' Experimental neurology, vol. 228, pp. 59-68, 2011. [42] C. W. Peng, J. J. Chen, H. Y. Chang, W. C. de Groat, and C. L. Cheng, 'External urethral sphincter activity in a rat model of pudendal nerve injury,' Neurourol Urodyn, vol. 25, pp. 388-96, 2006. [43] E. Van Asselt, J. Groen, and R. Van Mastrigt, 'A comparative study of voiding in rat and guinea pig: simultaneous measurement of flow rate and pressure,' American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 269, pp. R98-R103, 1995. [44] W. J. Fan, S. C. Chen, T. H. Hsieh, C. H. Lai, Y. S. Lin, C. W. Peng, and Y. R. Kou, 'Influence of serotonergic mechanisms on the urine flow rate in male rats,' Am J Physiol Regul Integr Comp Physiol, vol. 307, pp. R1239-50, Nov 15 2014. [45] T. Streng, R. Santti, and A. Talo, 'Similarities and differences in female and male rat voiding,' Neurourology and urodynamics, vol. 21, pp. 136-141, 2002. [46] S. C. Chen, W. J. Fan, C. H. Lai, J. J. J. Chen, and C. W. Peng, 'Effect of a 5-HT(1A) receptor agonist (8-OH-DPAT) on the external urethral sphincter activity in the rat,' J Formos Med Assoc, vol. 111, pp. 67-76, Feb 2012. [47] B. K. Canales, L. C. Fung, and S. P. Elliott, 'Miniature intravesical urethral lengthening procedure for treatment of pediatric neurogenic urinary incontinence,' J Urol, vol. 176, pp. 2663-6; discussion 2666-7, Dec 2006. [48] Y. Cruz and J. W. Downie, 'Sexually dimorphic micturition in rats: relationship of perineal muscle activity to voiding pattern,' Am J Physiol Regul Integr Comp Physiol, vol. 289, pp. R1307-18, Nov 2005. [49] T. Streng, R. Santti, K. E. Andersson, and A. Talo, 'The role of the rhabdosphincter in female rat voiding,' BJU Int, vol. 94, pp. 138-42, Jul 2004. [50] H. Noto, J. R. Roppolo, W. D. Steers, and W. C. de Groat, 'Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat,' Brain Res, vol. 549, pp. 95-105, May 17 1991. [51] Y. Tanaka, Y. Koyama, Y. Kayama, A. Kawauchi, O. Ukimura, and T. Miki, 'Firing of micturition center neurons in the rat mesopontine tegmentum during urinary bladder contraction,' Brain Res, vol. 965, pp. 146-54, Mar 7 2003. [52] C. L. Cheng and W. C. de Groat, 'The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats,' Exp Neurol, vol. 187, pp. 445-54, Jun 2004. [53] C. L. Cheng, C. P. Ma, and W. C. de Groat, 'Effect of capsaicin on micturition and associated reflexes in chronic spinal rats,' Brain Res, vol. 678, pp. 40-8, Apr 24 1995. [54] W. C. de Groat, M. O. Fraser, M. Yoshiyama, S. Smerin, C. Tai, M. B. Chancellor, N. Yoshimura, and J. R. Roppolo, 'Neural control of the urethra,' Scand J Urol Nephrol Suppl, pp. 35-43; discussion 106-25, 2001. [55] M. B. Chancellor and W. C. de Groat, 'Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder,' J Urol, vol. 162, pp. 3-11, Jul 1999. [56] F. Cruz, 'Vanilloid receptor and detrusor instability,' Urology, vol. 59, pp. 51-60, May 2002. [57] C. J. Fowler, 'Intravesical treatment of overactive bladder,' Urology, vol. 55, pp. 60-4; discussion 66, May 2000. [58] C. J. Fowler, 'Bladder afferents and their role in the overactive bladder,' Urology, vol. 59, pp. 37-42, May 2002. [59] B. Erdogan, O. Yaycioglu, I. Feride Sahin, F. Kayaselcuk, B. Cemil, E. Cemal Gokce, and M. Bavbek, 'The effects of fetal allogeneic umbilical cord tissue transplant following experimental spinal cord injury on urinary bladder morphology,' Neurol Neurochir Pol, vol. 47, pp. 138-44, Mar-Apr 2013. [60] J. Nagatomi, D. C. Gloeckner, M. B. Chancellor, W. C. DeGroat, and M. S. Sacks, 'Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury,' Ann Biomed Eng, vol. 32, pp. 1409-19, Oct 2004. [61] S. Lindstrom, M. Fall, C. A. Carlsson, and B. E. Erlandson, 'The neurophysiological basis of bladder inhibition in response to intravaginal electrical stimulation,' J Urol, vol. 129, pp. 405-10, Feb 1983. [62] L. Mazieres, C. Jiang, and S. Lindstrom, 'The C fibre reflex of the cat urinary bladder,' J Physiol, vol. 513 ( Pt 2), pp. 531-41, Dec 1 1998. [63] C. Tai, S. E. Smerin, W. C. de Groat, and J. R. Roppolo, 'Pudendal-to-bladder reflex in chronic spinal-cord-injured cats,' Exp Neurol, vol. 197, pp. 225-34, Jan 2006. [64] B. L. Ohlsson, M. Fall, and S. Frankenberg-Sommar, 'Effects of external and direct pudendal nerve maximal electrical stimulation in the treatment of the uninhibited overactive bladder,' Br J Urol, vol. 64, pp. 374-80, Oct 1989. [65] J. W. Boggs, B. J. Wenzel, K. J. Gustafson, and W. M. Grill, 'Frequency-dependent selection of reflexes by pudendal afferents in the cat,' J Physiol, vol. 577, pp. 115-26, Nov 15 2006. [66] C. Tai, J. Wang, X. Wang, J. R. Roppolo, and W. C. de Groat, 'Voiding reflex in chronic spinal cord injured cats induced by stimulating and blocking pudendal nerves,' Neurourol Urodyn, vol. 26, pp. 879-86, 2007. [67] J. S. Walter, M. P. Fitzgerald, J. S. Wheeler, B. Orris, A. McDonnell, and R. D. Wurster, 'Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations,' J Rehabil Res Dev, vol. 42, pp. 251-60, Mar-Apr 2005. [68] T. L. Yaksh, P. A. Durant, and C. R. Brent, 'Micturition in rats: a chronic model for study of bladder function and effect of anesthetics,' Am J Physiol, vol. 251, pp. R1177-85, Dec 1986. [69] S. Matsuura and J. W. Downie, 'Effect of anesthetics on reflex micturition in the chronic cannula-implanted rat,' Neurourol Urodyn, vol. 19, pp. 87-99, 2000. [70] A. Scheiner, J. T. Mortimer, and U. Roessmann, 'Imbalanced biphasic electrical stimulation: muscle tissue damage,' Ann Biomed Eng, vol. 18, pp. 407-425, 1990. [71] G. Liu, Y. H. Lin, Y. Yamada, and F. Daneshgari, 'External urethral sphincter activity in diabetic rats,' Neurourology and urodynamics, vol. 27, pp. 429-434, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52770 | - |
| dc.description.abstract | 膀胱功能障礙常好發於脊髓損傷或糖尿病。少有文獻探討會陰神經調控對於膀胱功能的可行性。此研究的兩大目的: 第一,判定六周脊髓損傷大白鼠在會陰神經電刺激下,提升排尿功能的影響;第二,判定三周或六周糖尿病大白鼠在慢性會陰神經微電流刺激下,對於排尿功能之影響,並探討其相關神經調控機制。
對於脊髓損傷大白鼠,利用兩種尿液動力量測來評估電刺激對於膀胱及尿道功能:在連續膀胱頂灌注下,同步量測等張力膀胱內壓及外尿道括約肌肌電圖;及在膀胱同體積灌注下,同步量測等體積膀胱內壓及外尿道灌注內壓。對於糖尿病大白鼠,為評估微電流刺激對於膀胱與尿道功能,在連續膀胱頂灌注下,同步量測等張力膀胱內壓、外尿道括約肌肌電圖及尿液流速。 對於脊髓損傷大白鼠,結果顯示其不正常的膀胱測壓量測,包括容量閾值、膀胱收縮壓及餘尿容量的增加,表示大白鼠在六周脊髓損傷後的排尿功能障礙。在脊髓損傷後,排尿效率下降至13%,而在會陰神經電刺激後,可提升至22% - 34%。此外,會陰神經電刺激顯著增加外尿道括約肌的波動時期,並增加未排尿期尿道內壓與排尿期高頻震盪尿道內壓的壓力差,及改變膀胱與外尿道活動的時間差。 另一方面,對於三周或六周糖尿病鼠的排尿功能障礙,其結果顯示出容量閾值、膀胱收縮壓及膀胱時期的增加。未接受微電刺激的六周糖尿病鼠,其排尿效率下降至18%,相對地,接受微電刺激的六周糖尿病鼠,其排尿效率仍維持在50%。此外會陰神經為電刺激顯著改變糖尿病鼠的外尿道括約肌波動時期、尿液流速平均值及流動時期。 總合上述發現,會陰神經調控可增長排尿時間,減少外尿道阻力,並恢復逼尿肌-括約肌協同失調的情形,進而可提升脊髓損傷鼠的排尿效率。對於糖尿病鼠,會陰神經微電刺激可增加尿液平均流速並減緩會陰神經病變,進而提升其排尿效率。 本研究證實會陰神經調控在慢性脊髓損傷或糖尿病鼠,對於膀胱功能障礙改善的可行性。這些結果可作為研發臨床恢復膀胱功能的神經輔具之基礎。 | zh_TW |
| dc.description.abstract | Bladder dysfunction often occurs in spinal cord injury (SCI) or diabetes mellitus. Few studies have explored the feasibility of pudendal neuromodulation in regulating bladder functions. Two aims of the present study: the first was electrical activation of the pudendal sensory branch in improving voiding functions in rats 6 weeks after a SCI and the second was chronic microstimulation of the pudendal sensory branch in improving the voiding functions in diabetic rats for 3 or 6 weeks.
To assess the effects of electrical stimulation (ES) on bladder and urethral functions, there were two urodynamic measurements for SCI rats: simultaneous recordings of the intravesical pressure (IVP) during continuous isotonic transvesical infusion (isotonic IVP) and external urethral sphincter-electromyography (EUS-EMG), and simultaneous recordings of transvesical pressure under isovolumetric conditions (isovolumetric IVP) and urethral perfusion pressure (UPP). And for electrical microstimulation diabetic rats, the effects of on bladder and urethral functions were assessed by simultaneous recordings of the IVP during continuous isotonic IVP, EUS-EMG, and urine flow rate (UFR). For SCI rats, our results revealed abnormal cystometric measurements, including increases in the volume threshold (VT), contraction amplitude (CA), and residual volume as well as decreased voided volume, which indicated voiding dysfunction in rats 6 weeks after an SCI. The voiding efficiency (VE) decreased to 13% after the SCI, which increased to 22%~34% after applying pudendal afferent stimulation. In addition, pudendal stimulation significantly increased the EUS burst period (EUS-BP) and the difference between the UPP and the high-frequency oscillation (HFO) baselines, and changed the time offset between bladder and EUS activities. On the other hand, our results revealed abnormal cystometric measurements, including increases in the VT, CA, and contraction duration, which indicated voiding dysfunction in diabetic rats of 3 or 6 weeks. The VE decreased to 18% at diabetic rats with sham ES of 6 weeks, which increased to ~50% after applying chronic pudendal microstimulation of 6 weeks. In addition, chronic pudendal microstimulation significantly changed the EUS-BP, mean of UFR and flow duration. All of these findings suggest that pudendal afferent stimulation improved the VE by prolonging the micturition interval, decreasing the urethral resistance, and recovering the detrusor-sphincter dyssynergia during the voiding phase in SCI rats and chronic pudendal microstimulation improved the VE by increasing mean of UFR, and reducing diabetic neuropathy on pudendal nerve in diabetic rats. This study demonstrates the feasibility of pudendal neuromodulation in rats with chronic SCI or chronic diabetes. These results could be as the base for developing an advanced neural prosthesis to restore bladder function in clinical settings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:26:52Z (GMT). No. of bitstreams: 1 ntu-104-D99945004-1.pdf: 1928963 bytes, checksum: 057941df2535f7dd54f2149a5c7cfaa9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
I. INTRODUCTION 1 1.1 Lower Urinary Tract 1 1.2 Spinal Cord Injury 3 1.3 Pudendal Neuromodulation 3 1.4 Diabetes Mellitus 4 1.5 Diabetic Cystopathy 4 1.6 Electrical Stimulation for Neuron Regeneration 5 1.7 Aims of This Study 6 II. MATERIALS AND METHODS 8 2.1 Neuromodulation of Pudendal Nerve for SCI Rat 8 2.1.1 Surgery of Spinal Cord Injury Rat 8 2.1.2 Urodynamic and EMG Recordings 8 2.1.3 Coordination Between Bladder and EUS Activities 11 2.1.4 Histological Examination 11 2.2 Chronic Microstimulation of Pudendal Nerve for Diabetic Rat 12 2.2.1 Development of Implantable Microstimulation System 13 2.2.2 Protocols for Chronic Pudendal Nerve Stimulation 13 2.2.3 IVP, EUS-EMG, and UFR Recordings 14 2.2.4 The Histology of the Pudendal Nerve 14 2.3 Data Analysis and Statistics 15 III. RESULTS 17 3.1 Neuromodulation of Pudendal Nerve for SCI Rat 17 3.1.1 Effects of Electrical Stimulation on Isotonic IVP and EUS-EMG 17 3.1.2 Effects of ES on Isovolumetric IVP and UPP 20 3.1.3 Temporal Relationships Between Isotonic IVP and EUS-EMG Activity 23 3.1.4 Histology of Urethra in NC and SCI Rats 25 3.2 Chronic Microstimulation of Pudendal Nerve for Diabetic Rat 27 3.2.1 Basic Structure of the Implantable Microstimulation System 27 3.2.2 Chronic pudendal ES on IVP, EUS-EMG, and UFR in NC rat 29 3.2.3 Effects of Chronic pudendal ES on IVP, EUS-EMG, and UFR in Diabetic rat 33 3.2.4 Histological Examination of Pudendal Sensory Nerve 38 IV. DISCUSSION 40 4.1 Neuromodulation of Pudendal Nerve for SCI Rat 40 4.2 Chronic Microstimulation of Pudendal Nerve for Diabetic Rat 44 V. CONCLUSIONS 47 VI. REFERENCES 48 | |
| dc.language.iso | en | |
| dc.subject | 逼尿肌-括約肌協同失調 | zh_TW |
| dc.subject | 神經調控 | zh_TW |
| dc.subject | 膀胱功能 | zh_TW |
| dc.subject | 會陰神經 | zh_TW |
| dc.subject | neuromodulation | en |
| dc.subject | detrusor-sphincter dyssynergia | en |
| dc.subject | bladder function | en |
| dc.subject | pudendal nerve | en |
| dc.title | 神經調控對逼尿肌-括約肌協同失調大白鼠的膀胱功能影響 | zh_TW |
| dc.title | Effects of Neuromodulation on Bladder Functions in Rats with Detrusor-Sphincter Dyssynergia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 郭德盛,彭志維 | |
| dc.contributor.oralexamcommittee | 賴金鑫,陳適卿,林啟萬,陳友倫 | |
| dc.subject.keyword | 神經調控,逼尿肌-括約肌協同失調,膀胱功能,會陰神經, | zh_TW |
| dc.subject.keyword | neuromodulation,detrusor-sphincter dyssynergia,bladder function,pudendal nerve, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
