請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52763完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑文 | |
| dc.contributor.author | Man-Ling Tung | en |
| dc.contributor.author | 董曼翎 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:26:33Z | - |
| dc.date.available | 2020-08-13 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | 1. Andes D, Craig W. Cephalosporins. In: Mandell G, Bennett J, Dolin R, eds. Mandell: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 7th ed. Philadelphia: Churchill Livingstone; 2009:323-39. 2. Neu HC. Structure-activity relations of new β-lactam compounds and in vitro activity against common bacteria. Rev Infect Dis 1983;5:S319-S37. 3. Neu HC. β-Lactam antibiotics: structural relationships affecting in vitro activity and pharmacologic properties. Rev Infect Dis 1986;8 Suppl 3:S237-59. 4. Bechtold H, Andrassy K, Jahnchen E, et al. Evidence for impaired hepatic vitamin K1 metabolism in patients treated with N-methyl-thiotetrazole cephalosporins. Thrombosis and haemostasis 1984;51:358-61. 5. Buening MK, Wold JS, Israel KS, Krammer RB. Disulfiram-like reaction to beta-lactams. JAMA 1981;245:2027. 6. Shearer MJ, Bechtold H, Andrassy K, et al. Mechanism of cephalosporin-induced hypoprothrombinemia: relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. Journal of clinical pharmacology 1988;28:88-95. 7. Uchida K, Matsubara T. Effect of flomoxef on blood coagulation and alcohol metabolism. Infection 1991;19 Suppl 5:S284-95. 8. Schell RF Kurzynski TA, LeFrock JL, et al. Antimicrobial activity of cefmetazole compared with those of other cephalosporins. Chemotherapy 1986;32:431-8. 9. Jones RN, Barry A, Fuchs P, Thornsberry C. Antimicrobial activity of cefmetazole (CS-1170) and recommendations for susceptibility testing by disk diffusion, dilution, and anaerobic methods. Journal of clinical microbiology 1986;24:1055-9. 10. Gadebusch HH, Schwind R, Lukaszow P, Whitney R, McRipley R. Cephamycin derivatives: Comparison of the in vitro and in vivo antibacterial activities of SQ 14,359, CS-1170, and cefoxitin. The Journal of antibiotics 1978;31:1046-58. 11. Griffith DL, Novak E, Greenwald CA, Metzler CM, Paxton LM. Clinical experience with cefmetazole sodium in the United States: an overview. Journal of Antimicrobial Chemotherapy 1989;23:21-33. 12. Shimada J, Hayashi Y, Nakamura K. Cefmetazole: clinical evaluation of efficacy and safety in Japan. Drugs under experimental and clinical research 1984;11:181-94. 13. Ruckdeschel G, Eder W. Comparative in vitro activity of the new oxacephem antibiotic, flomoxef (6315-S). European Journal of Clinical Microbiology and Infectious Diseases 1988;7:687-91. 14. Simon M, Plieth C. In vitro activity of flomoxef in comparison to other cephalosporins. Infection 1988;16:131-4. 15. Ito M, Ishigami T. The meaning of the development of flomoxef and clinical experience in Japan. Infection 1991;19:S253-S7. 16. Baumgart KW, Baldo BA. Cephalosporin allergy. The New England journal of medicine 2002;346:380-1. 17. Macy E. Cephalosporin allergy. The New England journal of medicine 2002;346:380-1. 18. Fainstein V, Bodey GP, McCredie KB, et al. Coagulation abnormalities induced by beta-lactam antibiotics in cancer patients. The Journal of infectious diseases 1983;148:745-50. 19. McCloskey RV. Spontaneous reports of bleeding: comparison of N-methylthiotetrazole side chain (MTT) and non-MTT cephalosporins. The Journal of infectious diseases 1988;158:1405. 20. Nichols RL, Wikler MA, McDevitt JT, Lentnek AL, Hosutt JA. Coagulopathy associated with extended-spectrum cephalosporins in patients with serious infections. Antimicrobial agents and chemotherapy 1987;31:281-5. 21. Imaizumi M, Watanabe H, Ojika T, et al. A clinical study on pulmonary tissue uptake of flomoxef. The Japanese journal of antibiotics 1991;44:22-34. 22. Rodriguez-Barbero J, Marino E, Dominguez-Gil A. Pharmacokinetics of cefmetazole administered intramuscularly and intravenously to healthy adults. Antimicrobial agents and chemotherapy 1985;28:544-7. 23. Anderson KE. Effects of specific foods and dietary components on drug metabolism. Handbook of Drug-Nutrient Interactions: Springer; 2010:243-65. 24. Cooke G, Behan J, Costello M. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microbial Ecology in Health and Disease 2006;18:133-8. 25. Hill MJ. Intestinal flora and endogenous vitamin synthesis. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 1997;6 Suppl 1:S43-5. 26. Bang NU, Tessler SS, Heidenreich RO, Marks CA, Mattler LE. Effects of moxalactam on blood coagulation and platelet function. Rev Infect Dis 1982;4 Suppl:S546-54. 27. Stafford D. The vitamin K cycle. Journal of Thrombosis and Haemostasis 2005;3:1873-8. 28. Lipsky JJ. N-methyl-thio-tetrazole inhibition of the gamma carboxylation of glutamic acid: possible mechanism for antibiotic-associated hypoprothrombinaemia. Lancet 1983;2:192-3. 29. Lipsky JJ. Mechanism of the inhibition of the gamma-carboxylation of glutamic acid by N-methylthiotetrazole-containing antibiotics. Proceedings of the National Academy of Sciences of the United States of America 1984;81:2893-7. 30. Achneck HE, Sileshi B, Parikh A, Milano CA, Welsby IJ, Lawson JH. Pathophysiology of bleeding and clotting in the cardiac surgery patient from vascular endothelium to circulatory assist device surface. Circulation 2010;122:2068-77. 31. Mannucci PM, Duga S, Peyvandi F. Recessively inherited coagulation disorders. Blood 2004;104:1243-52. 32. Hirsh J, Poller L. The international normalized ratio: a guide to understanding and correcting its problems. Archives of internal medicine 1994;154:282-8. 33. Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest Journal 2001;119:8S-21S. 34. Büller HR, Agnelli G, Hull RD, Hyers TM, Prins MH, Raskob GE. Antithrombotic therapy for venous thromboembolic disease: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. CHEST Journal 2004;126:401S-28S. 35. Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991;30:10363-70. 36. Steenfos HH. Growth factors and wound healing. Scandinavian journal of plastic and reconstructive surgery and hand surgery 1994;28:95-105. 37. Kaiser CW, McAuliffe JD, Barth RJ, Lynch JA. Hypoprothrombinemia and hemorrhage in a surgical patient treated with cefotetan. Arch Surg 1991;126:524-5. 38. Wurtz RM, Sande MA. Cefotetan and coagulopathy. The Journal of infectious diseases 1989;160:555-6. 39. Breen GA, St Peter WL. Hypoprothrombinemia associated with cefmetazole. The Annals of pharmacotherapy 1997;31:180-4. 40. Brown RB, Klar J, Lemeshow S, Teres D, Pastides H, Sands M. Enhanced bleeding with cefoxitin or moxalactam. Statistical analysis within a defined population of 1493 patients. Archives of internal medicine 1986;146:2159-64. 41. Joshi M, Fitzpatrick BJ, Warren JW, Caplan ES, Tenney JH. A randomized controlled trial of moxalactam versus clindamycin/tobramycin in the treatment of mixed anaerobic/aerobic infections. The American surgeon 1986;52:467-71. 42. Pakter RL, Russell TR, Mielke CH, West D. Coagulopathy associated with the use of moxalactam. JAMA 1982;248:1100. 43. Pineo GF, Gallus AS, Hirsch J. Unexpected vitamin Κ deficiency in hospitalized patients. Can Med Assoc J 1973;109:880-3. 44. Ansell JE Kumar R, Deykin D. The spectrum of vitamin Κ deficiency. JAMA 1977;238:40-2. 45. Hooper CA Haney BB, Stone HH. Gastrointestinal bleeding due to vitamin Κ deficiency in patients on parenteral cefamandole (letter). Lancet 1980;1:39-40. 46. Rymer W. Hypoprothrombinemia associated with cefamandole. Drug Intell Clin Pharm 1980;14:780-3. 47. Chang JC. Acquired coagulopathy owing to parenteral cefamandole: renal failure as a predisposing factor. Ann Clin Lab Sci 1983;13:418-24. 48. Clancy CM Glew RH. Hypoprothrombinemia and bleeding associated with cefamandole (letter). Lancet 1983; 1:250. 49. Cristiano P. Hypoprothrombinemia associated with cefoperazone treatment. Drug Intell Clin Pharm 1984;18:314-6. 50. Conjura A, Bell W, Lipsky JJ. Cefotetan and hypoprothrombinemia (letter). Ann Intern Med 1988;108:643. 51. Holt J. Hypoprothrombinemia and bleeding diathesis associated with cefotetan therapy in surgical patients (letter). . Arch Surg 1988;123:523. 52. Rahal JJ, Simberkoff MS, Landesman SH, et al. Prospective evaluation of moxalactam therapy for gram-negative bacillary meningitis. Infect Dis 1984;149:562-7. 53. Osborne JC. Hypoprothrombinemia and bleeding due to cefoperazone (letter). Ann Intern Med 1985;102:721-2. 54. Reddy J, Bailey RR. Vitamin Κ deficiency developing in patients with renal failure treated with cephalosporin antibiotics. N Z Med J 1980;92:378-80. 55. Joehl RJ Rasbach DA, Ballard JO, Weitekamp RM, Stattler FR. Moxalactam. Evaluation of clinical bleeding in patients with abdominal infection. Arch Surg 1983;118:1259-61. 56. Panwalker AP Rosenfeld J. Hemorrhage, diarrhea and superinfection associated with the use of moxalactam (letter). Infect Dis 1983;147:171-2. 57. Lerner PI, Lubin A. Coagulopathy with cefazolin in uremia (letter). Ν Engl J Med 1974;290:1324. 58. Haubenstock A Schmidt P, Zazgornik J, Balcke P, Kopsa H. Hypoprothrombinaemic bleeding associated with ceftriaxone (letter). Lancet 1983;1:1215-6. 59. Baxter JG, Marble DA, Whitfield LR, Wells S, Walcczak P, Schentag JJ. Clinical risk factors for prolonged PT/PTT in abdominal sepsis patients treated with moxalactam or tobramycin plus clindamycin. Ann Surg 1985;201:96-102. 60. Meisel S. Hypoprothrombinemia due to cefoperazone (letter). Drug Intell Clin Pharm 1984;18:316. 61. Schentag JJ, Welage LS, Grasela TH, Adelman MH. Determinants of antibiotic-associated hypoprothrombinemia. Pharmacotherapy 1987;7:80-6. 62. Lipsky JJ. Antibiotic-associated hypoprothrombinemia. J Antimicrob Chemother 1988;21:281-300. 63. Parker SW Baxter J, Beam TR Jr. Cefoperazone-induced coagulopathy (letter). Lancet 1984;1:1016. 64. Strom BL, Schinnar R, Gibson GA, Brennan PJ, Berlin JA. Risk of bleeding and hypoprothrombinaemia associated with NMTT side chain antibiotics: using cefoperazone as a test case. Pharmacoepidemiology and drug safety 1999;8:81-94. 65. 陳俐如. 使用可能造成低凝血酶原血症的Cephalosporin類抗生素與出血風險:全國性嵌入型病例對照研究. 2014. 66. Stirling Y. Warfarin-induced changes in procoagulant and anticoagulant proteins. Blood coagulation fibrinolysis 1995;6:361-73. 67. Stanworth SJ, Walsh TS, Prescott RJ, et al. A national study of plasma use in critical care: clinical indications, dose and effect on prothrombin time. Crit Care 2011;15:R108. 68. Cooper ES, Bracey AW, Horvath AE, Shanberge JN, Simon TL, Yawn DH. Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets. JAMA 1994;271:777-81. 69. Walsh T, McClelland D, Lee R, et al. Prevalence of ischaemic heart disease at admission to intensive care and its influence on red cell transfusion thresholds: multicentre Scottish Study. British journal of anaesthesia 2005;94:445-52. 70. 陳汝芬. Warfarin併用一級交互作用藥品與消化道出血之風險分析. 2010. 71. 陳雅婷. 使用全民健康保險研究資料庫研究warfarin處方型態及潛在一級交互作用之風險分析. 2010. 72. Stork C, Etzel JV, Brocavich JM, Forlenza S. Cephalosporin-Associated Hypoprothrombinemia: Case and Review of the Literature. Journal of Pharmacy Technology 1994;10:5-13. 73. Strom BL, Schinnar R, Gibson GA, Brennan P, Berlin JA. Risk of bleeding and hypoprothrombinaemia associated with NMTT side chain antibiotics: using cefoperazone as a test case. Pharmacoepidemiology and drug safety 1999;8:81-94. 74. Bertino JS, Kozak AJ, Reese RE, Chiarello LA. Hypoprothrombinemia associated with cefamandole use in a rural teaching hospital. Archives of internal medicine 1986;146:1125-8. 75. Cefmetazole. In:DRUGDEX System (Micromedex 2.0). Greenwood Village, CO: Truven Health Analytics; c1974-2015. http://www.micromedexsolutions.com/micromedex2/librarian#. Accessed June 18, 2015. 76. Flomoxef. In:DRUGDEX System (Micromedex 2.0). Greenwood Village, CO: Truven Health Analytics; c1974-2015. http://www.micromedexsolutions.com/micromedex2/librarian#. Accessed July 18, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52763 | - |
| dc.description.abstract | 研究背景: Cephamycin類抗生素包括cefmetazole及flomoxef廣泛用於治療社區型感染症以及術後傷口感染預防,然而過去有許多文獻顯示,其化學結構中帶有N-methylthiotetrazole(NMTT)及N-hydroxyethyltetrazolethiol(HTT)支鏈,可能造成低凝血酶原血症(hypoprothrombinemia),而引起凝血功能異常或出血事件副作用。過去相關研究僅有一篇cefmetazole造成的病例報告,近年有透過臺灣全民健康保險資料庫所做的嵌入型病例對照研究顯示cefmetazole與flomoxef與出血傾向增加之相關性。為彌補健保資料庫受限於缺乏實驗室檢驗數據,本回溯性世代研究透過國立臺灣大學醫學院附設醫院(簡稱臺大醫院)電子資料庫,探討cefmetazole與flomoxef的使用與低凝血酶原血症與出血事件副作用發生風險之相關性、嚴重程度,以及該副作用之風險因子。 研究方法: 本回溯性世代研究期間設定為2008年至2013年,納入條件為研究期間內年齡20歲以上、在臺大醫院急診或住院使用針劑劑型之cefmetazole與flomoxef (定義為study antibiotics);amoxicillin/clavulanate、ampicillin/sulbactam、cefuroxime、cefotaxime和ceftriaxone(定義為reference antibiotics)等抗生素48小時以上之治療記錄。 本研究將納入觀察對象開始使用抗生素當日定義為index date,觀察期間為index date至研究終點發生、抗生素種類變更或抗生素療程結束後第7天。研究終點定義為觀察期間內發生低凝血酶原血症(international normalized ratio,INR增加大於1.5倍)與出血相關事件(以ICD-9-CM code找出有出血診斷者後,透過病歷回顧確認發生於用藥後)。以Cox proportional hazard model計算出經風險因子校正之風險比(adjusted HR)與95 %信賴區間呈現抗生素與副作用發生風險的相關性。 研究結果: 本研究共納入22480位病人(26420筆療程記錄),其中,cefmetazole使用者共3543筆,flomoxef共3866筆,reference antibiotics共19011筆,平均年齡約64歲,以男性略占多數(59.0 %)。研究結果顯示,使用cefmetazole與發生低凝血酶原血症(adjusted HR 2.28; 95 % CI 1.82-2.86)及出血事件具統計上顯著相關(adjusted HR 2.80; 95 % CI 1.74-4.50),且發生低凝血酶原血症之風險隨著使用劑量增加而增加;flomoxef的使用則未顯著增加發生低凝血酶原血症或出血事件之風險。使用study antibiotics後發生之出血事件種類種以腸胃道出血(41.02 %)為最多,其次為泌尿生殖道出血(35.02 %)。 另外,病人於index date前7天或觀察期間內有使用過warfarin(adjusted HR 12.31; 95 % CI 8.47-17.88)、肝功能不全(adjusted HR 2.90; 95 % CI 2.32-3.84)、腎功能不全(adjusted HR 1.96; 95 % CI 1.55-2.48)、血中白蛋白低下(adjusted HR 1.81; 95 % CI 1.38-2.38)以及過去曾有肝炎或肝衰竭病史(adjusted HR 2.09; 95 % CI 1.64-2.65)等情況為此類藥品副作用發生之顯著風險因子。 結論: 由於使用cefmetazole相較於使用amoxicillin/clavulanate、ampicillin/sulbactam、cefuroxime、cefotaxime和ceftriaxone等抗生素顯著增加低凝血酶原血症與出血事件發生風險,尤其當病人有服用warfarin、肝腎功能不全、血中白蛋白低下以及過去有肝臟疾病史時,在處方這類抗生素時,應定期監測病人的國際標準化凝血酶原時間比值及出血症狀。 | zh_TW |
| dc.description.abstract | Background: Hypoprothrombinemia-inducing cephamycins that contain NMTT or HIT side chain are commonly prescribed in the treatment of community-acquired infections at National Taiwan University Hospital (NTUH). One case report and our previous study analyzing National Health Insurance Research Database (NHIRD) demonstrated a potential hemorrhagic tendency or event related to cefmetazole and flomoxef. Due to limitations of NHIRD including lack of lab results, we performed a retrospective cohort study to examine the association and severity of cephamycins and the risk of hypoprothrombinemia and hemorrhagic events using electronic medical records at NTUH. Methods: Adult patients receiving cefmetazole and flomoxef (study antibiotics) and IV amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, cefotaxime and ceftriaxone (reference antibiotics) for more than 48 hours between 2008 and 2013 were included. Cox regression models were used to calculate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) for hypoprothrombinemia (INR >1.5 or longer than baseline) and bleeding events (hemorrhage-related ICD-9-CM code) occurring within 7 days after the end of antibiotic treatment. Results: We identified 22480 patients (26420 treatment courses) in the study period. A total of 3543 courses of cefmetazole, 3866 courses of flomoxef, and 19011 courses of reference antibiotics were included in the analysis. The patients’ average age was 64 years old and 59.0 % were male. The risks of hypoprothrombinemia were associated with study antibiotics use, renal dysfunction (aHR 1.96; 95 % CI 1.55-2.48) and hepatic dysfunction (aHR 2.90; 95 % CI 2.32-3.84), hypoalbuminemia (aHR 1.81; 95 % CI 1.38-2.38), co-medications such as warfarin (aHR 12.31; 95 % CI 8.47-17.88), and history of hepatitis or hepatic failure (aHR 2.09; 95 % CI 1.64-2.65). The aHRs of hypoprothrombinemia were 2.28 (95 % CI 1.82-2.86) in cefmetazole and 1.29 (95 % CI 0.99-1.68) in flomoxef. The aHRs were 2.80 (95 % CI 1.74-4.50) and 1.57 (95 % CI 0.86-2.88) for hemorrhagic events, respectively. The most common hemorrhagic sites were gastrointestinal tract (41.02 %), and 35.02 % of patients suffered from genitourinary hemorrhage. Conclusions: Close monitoring of INR levels in patients using cefmetazole is warranted, especially in patients who are taking warfarin, having renal or hepatic dysfunction and hypoalbuminemia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:26:33Z (GMT). No. of bitstreams: 1 ntu-104-R02451005-1.pdf: 1419277 bytes, checksum: 62b7f32d9f312b689addd5a3645574c3 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 x 第1章 緒論 1 第2章 文獻探討 2 2.1 Cephamycin類抗生素簡介 2 2.1.1 基本化學結構 2 2.1.2 藥理作用機轉 3 2.1.3 抗菌範圍與臨床用途 4 2.1.4 藥效學、藥動學、常用劑量與藥品副作用 5 2.2 Cephamycin類抗生素造成低凝血酶原血症機轉 6 2.3 凝血機制與凝血酶原檢測 7 2.4 Cephamycin類抗生素造成低凝血酶原血症或增加出血事件風險之相關研究文獻 9 2.5 使用Cephamycin類抗生素造成低凝血酶原血症或發生出血事件風險因子之文獻探討 13 第3章 研究目的 16 第4章 研究方法 17 4.1 研究方法 17 4.2 研究對象 17 4.2.1 納入條件 17 4.2.1 排除條件 17 4.3 資料蒐集 17 4.3.1 病人基本資料 18 4.3.2 病人生化實驗室數值檢查 18 4.3.3 其他可能引起低凝血酶原血症或出血風險增加之藥品及事件 18 4.3.4 病人使用抗生素之適應症 18 4.4 研究流程 19 4.5 研究架構 20 4.5.1 研究終點定義-低凝血酶原血症 21 4.5.2 研究終點定義-出血事件 21 4.5.2 其他可能引起低凝血酶原血症或出血風險增加之風險因子變項 23 4.5.3 抗生素使用劑量 23 4.6 統計分析 25 4.6.1 作業軟體 25 4.6.2 統計模型設定 25 4.6.3 統計模型設定 25 第5章 研究結果 26 5.1 病人的基本特性分析 26 5.1.1 納入病人人數 26 5.1.2 病人基本特性 28 5.2 使用cefmetazole、flomoxef與reference antibiotics終點分析 31 5.2.1 使用cefmetazole、flomoxef與發生低凝血酶原血症之相關性 31 5.2.2 使用cefmetazole、flomoxef與發生出血事件之相關性 32 5.2.3 Cefmetazole、flomxocef使用劑量與增加低凝血酶原血症或出血事件風險之相關性 36 5.3 使用cefmetazole、flomoxef與發生低凝血酶原血症或出血事件之風險因子 39 5.3.1 發生低凝血酶原血症之風險因子模型 39 5.3.2 發生出血事件之風險因子模型 40 5.4 以觀察期間天數進行敏感性分析 46 第6章 討論 54 6.1 研究族群之基本特性 54 6.1.1 研究對象納入與排除條件 54 6.1.2 研究架構與研究終點定義 55 6.1.3 研究族群基本特性 56 6.2 使用cefmetazole、flomoxef與發生低凝血酶原血症之相關性與風險因子 58 6.2.1 使用cefmetazole與flomoxef與發生低凝血酶原血症之相關性 58 6.2.2 使用cefmetazole與flomoxef與發生低凝血酶原血症之風險因子 58 6.2.3 抗生素使用劑量與發生低凝血酶原血症之相關性 59 6.3 使用cefmetazole、flomoxef與出血事件之相關性與風險因子 60 6.4 以觀察期間天數進行敏感性分析 61 6.5 研究特色與限制 62 6.5.1 研究特色 62 6.5.2 研究限制 64 第7章 結論 66 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 病歷回顧 | zh_TW |
| dc.subject | Cephamycin類抗生素 | zh_TW |
| dc.subject | 低凝血?原血症 | zh_TW |
| dc.subject | 出血事件 | zh_TW |
| dc.subject | 回溯性世代研究 | zh_TW |
| dc.subject | 醫院電子資料庫 | zh_TW |
| dc.subject | cephamycin | en |
| dc.subject | hypoprothrombinemia | en |
| dc.subject | hemorrhagic events | en |
| dc.subject | retrospective cohort study | en |
| dc.subject | electronic medical records | en |
| dc.title | 以回溯性世代研究探討Cephamycin類抗生素造成低凝血酶原血症與出血風險 | zh_TW |
| dc.title | Use of Cephamycins and the Risk of Hypoprothrombinemia and Hemorrhagic Events: A Hospital-Based Retrospective Cohort Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蕭斐元 | |
| dc.contributor.oralexamcommittee | 蔡偉,孫幸筠,陳文雯 | |
| dc.subject.keyword | Cephamycin類抗生素,低凝血?原血症,出血事件,回溯性世代研究,醫院電子資料庫,病歷回顧, | zh_TW |
| dc.subject.keyword | cephamycin,hypoprothrombinemia,hemorrhagic events,retrospective cohort study,electronic medical records, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 藥學專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
| 顯示於系所單位: | 臨床藥學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
