請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理(Chen-li Sun) | |
| dc.contributor.author | Yu-Lin Li | en |
| dc.contributor.author | 李育霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:25:42Z | - |
| dc.date.available | 2015-08-16 | |
| dc.date.copyright | 2015-08-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-14 | |
| dc.identifier.citation | [1] B. D. Hatton, I. Wheeldon, M. J. Hancock, M. Kolle, J. Aizenberg, and D. E. Ingber, 'An artificial vasculature for adaptive thermal control of windows,' Solar Energy Materials and Solar Cells, vol. 117, pp. 429-436, 2013 (DOI 10.1016/j.solmat.2013.06.027).
[2] Y. Peles, A. Kosar, C. Mishra, C. J. Kuo, and B. Schneider, 'Forced convective heat transfer across a pin fin micro heat sink,' International Journal of Heat and Mass Transfer, vol. 48,no. 17, pp. 3615-3627, 2005 (DOI 10.1016/j.ijheattransfer.2005.03.017). [3] S. Agrawal and A. Tiwari, 'Experimental validation of glazed hybrid micro-channel solar cell thermal tile,' Solar Energy, vol. 85,no. 11, pp. 3046-3056, 2011 (DOI 10.1016/j.solener.2011.09.003). [4] E. Kermani, S. Dessiatoun, A. Shooshtari, and M. M. Ohadi, 'Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells,' in 2009 Electronic Components and Technology Conference, San Diego, C.A., U.S.A, 2009, pp. 453-459. [5] P.-X. Jiang, M.-H. Fan, G.-S. Si, and Z.-P. Ren, 'Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers,' International Journal of Heat and Mass Transfer, vol. 44,no. 5, pp. 1039-1051, 2001 (10.1016/S0017-9310(00)00169-1). [6] C. L. Sun and H. C. Ou, 'Numerical characterization of a microscale solid-oxide fuel cell,' Journal of Power Sources, vol. 185,no. 1, pp. 363-373, 2008 (DOI 10.1016/j.jpowsour.2008.06.048). [7] 'CFD-ACE+ V2008 User Manual,' 2008. [8] B. Kongtragool and S. Wongwises, 'Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator,' Solar Energy, vol. 81,no. 7, pp. 884-895, 2007 (DOI 10.1016/j.solener.2006.11.004). [9] B. L. Diffey, 'Sources and measurement of ultraviolet radiation,' Methods, vol. 28,no. 1, pp. 4-13, 2002 (10.1016/S1046-2023(02)00204-9). [10] B. Gasanov and N. Bulanov, 'Effect of the droplet size of an emulsion dispersion phase in nucleate boiling and emulsion boiling crisis,' International Journal of Heat and Mass Transfer, vol. 88, pp. 256-260, 2015 (10.1016/j.ijheatmasstransfer.2015.04.018). [11] Y. H. Mori, E. Inui, and K. Komotori, 'Pool boiling heat-transfer to emulsions,' Journal of Heat Transfer, vol. 100,no. 4, pp. 613-617, 1978 (10.1115/1.3450865). [12] A. Balzar, P. Stumpf, S. Eckhoff, H. Ackermann, and M. Grupp, 'A solar cooker using vacuum-tube collectors with integrated heat pipes,' Solar Energy, vol. 58,no. 1, pp. 63-68, 1996 (10.1016/0038-092X(96)00024-2). [13] F. Kreith and J. F. Kreider, Principles of Solar Engineering. D.C., Washington, U.S.A: Hemisphere Publishing, 1978. [14] D. Wen and Y. Ding, 'Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,' International Journal of Heat and Mass Transfer, vol. 47,no. 24, pp. 5181-5188, 2004 (10.1016/j.ijheatmasstransfer.2004.07.012). [15] J. R. Culham and Y. S. Muzychka, 'Optimization of plate fin heat sinks using entropy generation minimization,' IEEE Transactions on Components and Packaging Technologies, vol. 24,no. 2, pp. 159-165, 2001 (10.1109/6144.926378). [16] W. A. Khan, R. J. Culham, and M. M. Yovanovich, 'Optimal design of tube banks in crossflow using entropy generation minimization method,' Journal of Thermophysics and Heat Transfer, vol. 21,no. 2, pp. 372-378, 2007 (10.2514/1.26824). [17] A. A. Ayón, R. Braff, C.-C. Lin, H. H. Sawin, and M. A. Schmidt, 'Characterization of a time multiplexed inductively coupled plasma etcher,' Journal of the Electrochemical Society, vol. 146,no. 1, pp. 339-349, 1999 (10.1149/1.1391611). [18] M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. Boca Raton, Florida, U.S.A: CRC press, 2002. [19] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, 'National instruments LabVIEW: a programming environment for laboratory automation and measurement,' Journal of the Association for Laboratory Automation, vol. 12,no. 1, pp. 17-24, 2007 (10.1016/j.jala.2006.07.012). [20] MATLAB, version 7.8.0 (R2009a): MathWorks, 2009. [21] M. F. Modest, Radiative Heat Transfer. N.Y., New York, U.S.A: McGraw-Hill, 1993. [22] L. Kocsis, P. Herman, and A. Eke, 'The modified Beer–Lambert law revisited,' Physics in Medicine and Biology, vol. 51,no. 5, p. N91, 2006 (10.1088/0031-9155/51/5/N02). [23] T. F. Tadros, Emulsion science and technology: a general introduction. Weinheim, Baden-Württemberg, Germany: Wiley-VCH, 2009. [24] D. J. McClements, Food Emulsions: Principles, Practices, and Techniques, 2nd ed. Boca Raton, Florida, U.S.A: CRC press, 2004. [25] G. Broughton and L. Squires, 'The viscosity of oil-water emulsions,' The Journal of Physical Chemistry, vol. 42,no. 2, pp. 253-263, 1938 (10.1021/j100897a010). [26] R.-H. Wang and J. G. Knudsen, 'Thermal conductivity of liquid-liquid emulsions,' Industrial & Engineering Chemistry, vol. 50,no. 11, pp. 1667-1670, 1958 (10.1021/ie50587a042). [27] H. Tyagi, P. Phelan, and R. Prasher, 'Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,' Journal of Solar Energy Engineering, vol. 131,no. 4, p. 041004, 2009 (10.1115/1.3197562). [28] Z. Barbaric, A. Pavlovic, and V. Nikolic, 'The estimated temperature error using an infrared thermal imaging camera,' in 22nd Telecommunications forum TELFOR 2014, Belgrade, Serbia, 2014, pp. 469-472. [29] C. M. Lopes and M. I. Felisberti, 'Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC,' Polymer Testing, vol. 23,no. 6, pp. 637-643, 2004 (10.1016/j.polymertesting.2004.01.013). [30] Y. A. Çengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals & Applications, 4th ed. N.Y., New York, U.S.A: McGraw-Hill, 2011. [31] Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, and J. K. Chang, 'PDMS-based micro PCR chip with parylene coating,' Journal of Micromechanics and Microengineering, vol. 13,no. 5, pp. 768-774, 2003 (10.1088/0960-1317/13/5/332). [32] B. Sopori, W. Chen, J. Madjdpour, and N. Ravindra, 'Calculation of emissivity of Si wafers,' Journal of Electronic Materials, vol. 28,no. 12, pp. 1385-1389, 1999 (10.1007/s11664-999-0126-7). [33] M. A. Boles, Thermodynamics: An Engineering Approach vol. 1056. N.Y., New York, U.S.A: McGraw-Hill, 2011. [34] N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides, 'Self-assembly of mesoscale objects into ordered two-dimensional arrays,' Science, vol. 276,no. 5310, pp. 233-235, 1997 (10.1126/science.276.5310.233). [35] Y. Li, T. Verbiest, and I. Vankelecom, 'Improving the flux of PDMS membranes via localized heating through incorporation of gold nanoparticles,' Journal of Membrane Science, vol. 428, pp. 63-69, 2013 (10.1016/j.memsci.2012.10.050). [36] R. Samy, T. Glawdel, and C. L. Ren, 'Method for microfluidic whole-chip temperature measurement using thin-film poly (dimethylsiloxane)/Rhodamine B,' Analytical Chemistry, vol. 80,no. 2, pp. 369-375, 2008 (10.1021/ac071268c). [37] A. Arce, E. Rodil, and A. Soto, 'Volumetric and viscosity study for the mixtures of 2-ethoxy-2-methylpropane, ethanol, and 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid,' Journal of Chemical & Engineering Data, vol. 51,no. 4, pp. 1453-1457, 2006 (10.1021/je060126x). [38] S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin, 'Thermal conductivity of nanoparticle suspensions,' Journal of Applied Physics, vol. 99,no. 8, p. 084308, 2006 (10.1063/1.2189933). [39] M. M. Conceição, R. A. Candeia, F. C. Silva, A. F. Bezerra, V. J. Fernandes, and A. G. Souza, 'Thermoanalytical characterization of castor oil biodiesel,' Renewable and Sustainable Energy Reviews, vol. 11,no. 5, pp. 964-975, 2007 (10.1016/j.rser.2005.10.001). [40] M. Werner, A. Baars, C. Eder, and A. Delgado, 'Thermal conductivity and density of plant oils under high pressure,' Journal of Chemical & Engineering Data, vol. 53,no. 7, pp. 1444-1452, 2008 (10.1021/je700685q). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52744 | - |
| dc.description.abstract | 本研究利用太陽光模擬器作為熱源,探討不同微集熱元件之流道設計、吸收層材質與工作流體對於熱交換效率的影響。我們藉由量測工作流體在流道之出入口溫度差計算單位體積之焓差,並利用熱像儀量測微集熱元件之表面溫度,其中流道設計包括蛇型流道 (serpentine)、雙蛇型流道 (double serpentine)、歧管型流道 (oblique-rib) 與棋盤型流道 (rod-bundle) 四種,工作流體則有水、乙醇、質量分率為0.3與0.001之太古油乳化劑四種。
實驗結果顯示,微集熱元件之吸收層須以高放射率之金屬材料為首選,放射率越高,能使微集熱元件從熱輻射中吸收更多熱。而工作流體的部分,則是水與質量分率為0.001之太古油乳化劑有較好的表現,所造成之工作流體之出入口溫度差、工作流體單位體積焓差與微集熱元件效率皆較高。而質量分率為0.3之太古油乳化劑表現稍微遜色,乙醇則是最不適合使用。在流道設計方面,則是以蛇型流道與雙蛇型流道的表現最佳,更可凸顯工作流體為水與質量分率為0.001之太古油乳化劑時的優勢,棋盤型流道表現較一般,但由於歧管型流道在入出口的對角線位置會造成流體停滯的盲區 (dead zones),導致工作流體所吸收的太陽熱能最少,表現最差。一般而言,體積流率增加會使工作流體出入口溫度差與工作流體單位體積焓差下降,但微集熱元件效率則是會隨著體積流率增加而上升。本研究所得之結果可協助我們了解微集熱器吸收太陽能熱輻射的機制與主宰之重要參數,以利我們在未來將乳化劑進一步運用在中溫朗肯熱循環系統中。 | zh_TW |
| dc.description.abstract | This study focuses on the design of the microscale solar collector for a medium-temperature Rankine Cycle. The influences of the material of the absorption layer, the working fluid, and the microchannel design on the efficiency of the microscale solar collector are discussed. Three different working fluids are tested: water, ethanol, sulfated castor oil/water emulsion with a mass fraction of 0.3 and sulfated castor oil/water emulsion with a mass fraction of 0.001. Experimental results show that the absorption layer of microscale solar collector needs to be a high emissivity metal material, the higher the emissivity, the more heat from the radiation can be absorbed by the microscale solar collector. We measure the temperature difference between inlet and outlet to calculate the enthalpy increase per unit volume, which serves as a reference to evaluate the thermal performance of the collector. From the results, we find that water and sulfated castor oil/water emulsion with a mass fraction of 0.001 lead to the highest efficiency. On the other hand, increasing the mass fraction to 0.3 brings moderate performance, and ethanol results in the poorest efficiency. Among the four microchannel designs, serpentine and double serpentine channel have the best outcome. This is because serpentine and double serpentine channel have higher overall heat transfer coefficient than oblique-rib and rod-bundle channel. In contrast, there exists dead zones in the diagonal corner of the oblique-rib channel design, where working fluid is stagnant and convection is poor, so the performance of oblique-rib channel is the worst. The temperature difference and the enthalpy difference per unit volume both decreases with the increase of the volumetric flow rate and the efficiency of the microscale solar collector is actually enhance by increasing volumetric flow rate. The results of this study help to elaborate the heat transfer mechanisms and the leverage between different important parameters in the solar collector design, which will serve as the foundation to employ emulsions in a medium-temperature Rankine-cycle system in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:25:42Z (GMT). No. of bitstreams: 1 ntu-104-R02522321-1.pdf: 4290897 bytes, checksum: be697df0ba89523575e4f31e638c6cef (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 iii
Abstract iv 目錄 vi 符號索引 ix 表目錄 xiii 圖目錄 xiv 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 微集熱元件 2 1.2.2 模擬太陽光加熱系統 5 1.2.3 乳化劑的沸騰性質 6 1.3 研究動機 7 第二章 元件設計、製程與實驗程序 8 2.1 微集熱元件選用 8 2.2 太陽輻射理論 9 2.3 平板式太陽能集熱器之流道設計 11 2.3.1 蛇型流道 serpentine channel 11 2.3.2 雙蛇型流道 double serpentine channel 12 2.3.3 歧管型流道 oblique-rib channel 13 2.3.4 棋盤型流道 rod-bundle channel 14 2.3.5 average Nusselt number/總熱傳係數比較與預測 15 2.4 微集熱元件之熱傳分析 16 2.5 矽基材微集熱元件製程 19 2.5.1 矽晶圓清洗 19 2.5.2 第一次微影 19 2.5.3 第一次ICP蝕刻 21 2.5.4 第二次微影 21 2.5.5 第二次ICP蝕刻 22 2.5.6 矽玻璃陽極接合 22 2.5.7 晶圓切割 22 2.6 PDMS基材微集熱元件製程 22 2.6.1 微影製程 23 2.6.2 PDMS製程 24 2.6.3 元件接管 26 2.6.4 吸收層夾持 26 2.7 實驗架構 26 2.7.1 溫度擷取系統 26 2.7.2 太陽光模擬系統 27 2.7.3 輻照度校正 27 2.7.4 工作流體 30 2.7.5 紅外線熱像儀 33 2.8 實驗量測程序 33 2.9 不確定性分析 35 2.9.1 體積流率之相對不確定性 36 2.9.2 溫度差之相對不確定性 37 2.9.3 質量分率之相對不確定性 40 2.9.4 乳化劑密度之相對不確定性 41 2.9.5 乳化劑比熱之相對不確定性 42 2.9.6 氙弧燈太陽光模擬器輻射通量之相對不確定性 42 2.9.7 工作流體單位體積焓差之相對不確定性 44 2.9.8 工作流體熱傳速率之相對不確定性 47 2.9.9 紅外線熱像儀溫度量測之相對不確定性 48 2.9.10 微集熱元件效率之相對不確定性 48 第三章 結果與討論 50 3.1 工作流體出入口溫度差隨流率的變化 50 3.1.1 吸收層之影響 51 3.1.2 工作流體之影響 52 3.1.3 流道設計之影響 53 3.2 工作流體單位體積焓差隨流率的變化 54 3.2.1 吸收層之影響 55 3.2.2 工作流體之影響 56 3.2.3 流道設計之影響 56 3.3 微集熱元件效率隨流率的變化 57 3.3.1 吸收層之影響 58 3.3.2 工作流體之影響 58 3.3.3 流道設計之影響 59 3.4 微集熱元件表面溫度受流率的影響 60 第四章 結論與建議 62 4.1 結論 62 4.2 建議 64 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 太陽能 | zh_TW |
| dc.subject | 朗肯循環 | zh_TW |
| dc.subject | 乳化劑 | zh_TW |
| dc.subject | 微流元件設計 | zh_TW |
| dc.subject | 熱傳分析 | zh_TW |
| dc.subject | Rankine cycle | en |
| dc.subject | solar | en |
| dc.subject | thermal analysis | en |
| dc.subject | microchannel design | en |
| dc.subject | emulsion | en |
| dc.title | 微太陽能集熱元件之設計與熱傳分析 | zh_TW |
| dc.title | Design and Thermal Analysis of a Microscale Solar Collector | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃智永(Chih-Yung Huang),黃振康(Chen-Kang Huang),田維欣(Wei-Hsin Tian) | |
| dc.subject.keyword | 太陽能,朗肯循環,乳化劑,微流元件設計,熱傳分析, | zh_TW |
| dc.subject.keyword | solar,Rankine cycle,emulsion,microchannel design,thermal analysis, | en |
| dc.relation.page | 143 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
